BM 64
APHICS

EDITED BY NICKHAMPSHIRE

CBM.
64
GRAPHICS

NICK HAMPSHIRE

RE Sovme,
HGW!Q’ Aol V. O

%7L&z o

Duckworth

First published in 1985 by
Gerald Duckworth & Co. Ltd
The Old Piano Factory
43 Gloucester Crescent, London NW1

© 1985 by Nick Hampshire

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior permission of the publisher.

ISBNO 7156 1874 1

Printed in Great Britain by
Redwood Burn Ltd., Trowbridge.

CONTENTS

Introduction

Colour

Introduction

How Colour is Displayed

Setting Colour From Basic

Setting Registers for Multi-Colour Mode
Using Extended Colour Mode

Graphics

High Resolution Graphics
High Resolution Demo
3D Drawing 1

3D Drawing 2

Move

Ellipse

Interpolate

Sprites

Sprite Theory
Sprite Generator
Sprite Demo
Character Theory
Character Editor

Display Management
Introduction

Demo
Fine Resolution Plotting

12
15
19

30
41
46
52
57
62
66

72
76
83
86
90

96
106
115

Fine Resolution Emulator 128

Graph Function 131
Bar Chart 1 133
Bar Chart 2 136
Scrolling Routines 139
Block Scrolling 147
Long Waveform Graph 151
Large Screen Display 153
Multiple Screen Display 162
Large Screen 166
Screen Save and Read 172
Appendices
Appendix A. Screen Display Codes 177
Appendix B. Screen Colour and Memory map 179
Appendix C. Chart Colour Codes 180
Appendix D. Screen Memory Grid 181
Appendix E. Colour Memory Grid 182
Appendix F. Sprite Grid 183
Appendix G. Character 8x8 Grid 184
Index 185
INTRODUCTION

This book is a compendium of graphics programs to assist the CBM
64 user to gain the greatest advantage from his computer. New
users will find this book of great value once they understand Basic
computing.

NICK HAMPSHIRE

dNo109

COLOUR ON THE COMMODORE 64
INTRODUCTION

The Commodore 64 has the ability to display a wide range of
colours, in any one of the three different colour modes. These
modes range from the Standard ‘normal’ Display, as seen whenthe
computer is on, through to what is known as the Multi-colour
Mode. In Multicolour Mode, each character can be displayed with
up to four colours. Finally, in the Extended Colour Mode, the user
has the ability to control the background colour of any character,
while using the foreground colour.

These three modes give the user a choice of different colours for
visual displays. When not running a program, the user can — using
the direct mode — access the first 8 colours by holding down the
‘CONTROL key and pressing any number from 1 through to 8. For
example; by holding ‘CONTROL and depressing key ‘5’ any
characters thereafter typed will appear in purple on the screen.

The second 8 colours are accessed by holding down the
‘Commodore Logo’ key, and again, by depressing any key from 1
through to 8. To display a typed character on the screen, in one of
the three shades of grey, hold down the ‘Commaodore Logo' key and
key 5.

Afull list of colours is as follows:

Pressing ‘CONTROL and:

1 2 3 4 5 6
Black White Red Cyan Purple Green
7 8
Blue Yellow

Pressing ‘Commodore Logo’ and:

1 2 3 4 5 6
Orange Brown Lt Red Grey 1 Grey2 LtGreen

7 8
Lt Blue Grey 3

HOW COLOURIS DISPLAYED

The Colour memory area is called from locations 55296 ($D800) to
56295 ($DBE7). Unlike most of the other memory areas in the
Commodore 64, this one CANNOT be moved. These colour
locations correspond to the usual screen memory locations of 1024
to 2023. To change the colour of a character stored in the top left
hand corner of the screen, it is necessary to ‘POKE 55296,X' —
where X is a number from 0 to 15. As a further example, to change
the colour of a character stored in the bottom right hand corner of
the screen: ‘POKE 56295,X'. As indicated, X must lie in the range of
0 to 15, and these numbers relate to the 16 colours mentioned
eariier. Black is taken to be colour number 0, White colour number
1, and this continues up to the third shade of grey, which is colour
number 15. In this way, to produce a PURPLE character in the top
left hand corner of the screen, one has to ‘POKE 55296,4",

The above operation changes the foreground colour of the
character. To change the background colour, memory locations
53280 and 53281 must be used, being the locations for the border
colour and background colour 0. The background colours 1,2 and 3
will be dealt with later.

‘POKE-ing 53281’ with any number between 0-15 mentioned
earlier will give a border in the appropriate colour. For example,
‘POKE 53280,4’ will give a purple border. To change the background
of the entire screen display, ‘POKE 53281’ with a number from 0 to
15. Using ‘POKE 53280,4' and ‘POKE 53281,4', both screen and
border will appear in purple and the screen display will look bigger
thanitactually is.

In normal High Resolution Mode, control of colour onthe screen
is somewhat limited. Although it is possible to address each dot
(pixel) in an 8 by 8 character space, if that dot is off, then the dot
takes the existing background colour. If it is on, it takes the character
colour assigned to that screen position. This may sound very good,
but problems arise when two different coloured lines cross.

The Muiti-colour Mode now becomes important. Each dot, in
the 8 by 8 character space, can be any one of four colours: the
screen colour, the background colour 0, the background colour 1 or
2 (memory locations 53282 and 53283), or the ordinary character
colour. However, this gain is not achieved without the loss of some
otherfunction.

in the Multi-colour Mode, each dot is twice as wide asadotin the
high resolution mode.

Finally, the Extended Background Mode gives control over the
background and foreground colour of each character. It is possible
to have a red character with a white background on a black screen.
This is achieved by control of the four memory locations from
53281 to 53284, each of which can hold any of the 16 colours.
Control of the foreground colour is obtained by using the normal
colour memory, which operates in exactly the same way as in
normal Colour Mode.

As shown, the Extended Background may only be used when
there is a loss of another function. Only the first 64 characters in the
character ROM, or the first 64 in the programmable character set
can now be used.

The Multi-colour and Extended Background Modes are referred
to later in the text. Their precise working mechanism, and the
method by which they can be accessed from Basic, will then be
explained.

DESIGNING COLOUR DISPLAYS

Before producing any type of colour display, one needs to have an
idea of what colours go well together, what restraints there are
when using combinations of colours, how many colours per
character space, and so on.

The following chart will give an idea of what colours are usable
together on the same line of the TV, and what colours to avoid.

0

*

N —-=O

3 *
4 *
5 *
6+
7*
8+
g
10 +
n *
12 *
13 *
14 *
15 *

*0

SCREEN COLOUR

Where ‘*' indicates ‘Excellient’

-—

*

2

*

3
*

* +

*

3

CHARACTER COLOUR

4 5
* 4+
* *
+

+

*

+ o+
4 5

6 7 8 9 10N
* % *

*

*

o * * 4 4

*

* 4 ok %

Where ‘+’ indicates ‘Reasonable’

Where’ 'indicates ‘Very Poor’

*
-+ * + *
* *

+ *
*
*
*
+
+.
8 9

+

-+

* 4 ok ok

0 N

12

13 14 15
* * *
* *
+

+
+
* +
+ * *
+
*
+
* + *
*
+

+
13 14 15

Before producing any colour displays, a glance at the above
chart should give a fair idea of whether the display produced will
look reasonable or not.

This, however, is using only one colour per character square
What happens when using more?

MORE COLOURS PER CHARACTER SQUARE

Normally, one uses two colours per 8x8 character square:
foreground and background. The foreground is set using the
colour RAM in locations 55296 to 56295 to define the foreground
colour of each particular square, and the screen background is set
by ‘POKE-ing’ memory location 53281.

In Muilticolour Mode, the screen’s resolution is limited to 160
pixels by 200. In compensation for this, each dot in each 8x8 square
can be any one of four colours: the screen colour, the colour in
background registers 1 or 2, and the character colour.

To control the background colour for each character as well as
the foreground colour, whilst leaving the overall screen
background colour unaffected, enter what is known as Extended
Colour Mode.

10

18 PEM COLOUR DEMO
REM

40 VR=10824
Sa KR=55296
€@ PRINT "
70 POKES3231,1
20 FORI=YRTOVR+999
a0 POKED, 160 NEXT

180 Z=KR:Q=KR+39

110 E=KR+96Q:R=KR+399
129 FORJ=GTO12

120 FORI=ATO19

140 “=INTCRNDC1)%16)
150 POKEZ+J#41+1.%
160 POKEQ+T#29-1.%
165 C1=2+I%41+1%40
166 IFCIDSE29STHENITS
178 POKECI, X

TS Cl=04J¥39+ 14400

75 IFC1>S6295THEN1S@
1€6 POKEC, ¥

126 POKEE-J¥39+1.%
200 POKER-J#41-.X
205 C1=E-J4#29-1¥40
206 IFC1{SS296THEND1S
218 POKECL.X

215 C1=F-J¥d1-1%40
216 IFC1CS5296THEN22G
220 POKEC1 .Y

226 GETAF: IFASC""THENST
248 MEWT
258 FORK=1T0200 MNEXT
268 MEXT:GOTO120

278 PRINTII"; ' POKES3221.6
READY.

SETTING COLOUR FROM BASIC

Simple selection of colour in normal mode can be done via the
keyboard, as described earlier, or from within a Basic program. The
latter option will be considered here.

For the purpose of these examples, consider the screen RAM to
be occupying memory locations 1024 to 2023. It can be moved
about within RAM. Colour RAM, as seen, always occupies memory
locations 55296 to 56295.

Each of these colour RAM locations is four bits wide, meaning
that they can contain any integer from O to 15, as the Commodore
64 can use 16 possible colours.

The Memory location for altering the background colour of the
screen is 53281, and by ‘POKE-ing’ this with any integer number
from 0 to 15, this colour can be changed at will. The following short
demonstration program runs through all the possible screen
background colours:

10PRINT “(CLR)” : REM CLEAR THE SCREEN

20 FOR!=0TO 15 : REM START OF LOOP

30 POKE 53281, : REM CHANGE BACKGROUND COLOUR
40 FOR J = 110 1000 : NEXT J : REM DELAY

50 NEXT | : REM NEXT STEPIN LOOP

When run, this program will clear the screen, and then step
through the 16 possible colours at the rate of about one per second.
The delay loop in line 40 is simply to achieve this stepping process.

When finished, hit‘/RUN-STOP/RESTORE' to get the display back
to normal again.

To select the border colour, set memory location 53280 to any
one of the 16 possible colours. One can alter the above program to
set the screen background colour to white, and then step through
all possible border colours.

10 POKE 53281,1 : REM SET SCREEN COLOUR TOWHITE
20 PRINT “(CLR)” : REM CLEAR THE SCREEN

30 FOR1=0TO 15 : REM START OF LOOP

40 POKE 53280, : REM CHANGE BORDER COLOUR

50 FORJ = 1TO 1000 : NEXTJ : REM DELAY

60 NEXT ! : REM NEXT STEPIN LOOP

12

When run, this program will set the screen colour to white, clear
the screen, and then step through each border colour at the rate of
about one per second.

Both these changes can combine to produce a bewildering
variety of screen/border colour combinations. In the following
program, no deiay loop has been inserted (although a delay loop
can be inserted by perhaps copying line 50 from the last program),
and instead, the program just flashes through all the changes.

10 PRINT “(CLR)" : REM CLEAR THE SCREEN

20FOR1=0TO 15: REM SET UP SCREEN CHANGE LOOP
30FORJ =0TO 15 : REM SET UP BORDER CHANGE LOOP

40 POKE 53280,J : REM CHANGE BORDER COLOUR

50 NEXT J : REM NEXT STEPIN BORDER LOOP

60 POKE 53281,| : REM CHANGE SCREEN COLOUR

70 NEXT | : REM ONCE BORDER FINISHED, CHANGE SCREEN
AGAIN

When run, the program clears the screen, steps through all
sixteen border colours, then changes the screen colour, steps
through the border colours again, and soon.

As usual, hitting ‘RUN-STOP/RESTORE’ will get the screen
display back to normal.

The colour RAM is closely linked to the screen RAM. By
changing any byte of the colour RAM, typing in an integer from 0 to
15 will change the colour of the character at that particular location
on the screen. For example, if you have a white screen and a blue
letter A at screen location 1024, i.e. at the top left hand corner of
the screen, to change that to a purple A, type POKE 55296, 4.

The following program fills every character space on the screen
with a random letter, and then changes that letter to a random
colour. Using a black border and a white screen, the resulting
display may not please, but at least gives some idea of how the
colour RAM works in conjunction with screen RAM.

10 POKE 53280,0 : REM SET BLACK BORDER

20 POKE 53281,1 : REM SET WHITE SCREEN

30FOR 1= 1024 TO 2023 : REM SET UP SCREENFILL LOOP

40 POKE |, INT(RND(0.5)*25+1): REM POKE RANDOM LETTER
ONTO SCREEN

50 NEXT | : REM NEXT STEP IN SCREENFILL LOOP

13

60 FOR J = 55296 TO 56295 : REM SET UP COLOUR CHANGE
LOOP

70 POKE J, INT(RND(1)*16) : REM POKE RANDOM COLOUR

80 NEXTJ : REM NEXT STEP IN COLOUR CHANGE LOOP

When run, hit RUN-STOP/RESTORE to get the screen display
back to normal again.

One final point. Colour codes, or border changes, or whatever,
can of course be input into a program and acted upon. The
following short program asks you to type in a colour for the border
display, and changes the border accordingly. Typing 16 exits the
program.

10 PRINT “(CLR)” : REM CLEAR THE SCREEN

20 INPUT A: REMINPUT ANUMBER

30 IF A<0 OR A>16 THEN 20 : REM DON'T ACCEPT INVALID
INPUT

35IFA=16 THENEND

40 POKE 53280,A : REM CHANGE BORDER COLOUR AS
REQUESTED

50 GO TO 20 : REM BACKAND DO ITAGAIN

14

SETTING REGISTERS FOR MULTI-COLOUR MODE

We have discussed the advantages and disadvantages of
programming in one or other of the various colour modes
available.

Let us now consider the Multi-colour Mode, the methods of
displaying characters in that mode, the sort of displays that can be
achieved, and how to interleave this with normal high resolution
displays.

First, what, precisely, is the Multi-colour Mode?

In normal high resolution mode, you can control a screen
definition area of 320 x 200 pixels, and each of these pixels can have
two possible colours. Either the upper 4 bits of the video RAM for
the points, or the lower 4 bits for the background (see section on
Hi-Resolution Graphics).

Although this does give a fairly fine control over video output, it
is not without its limitations. As seen before, certain character
colours do not go well together, and this can lead to
problems in high resolution colour displays. Having only two
colours per character space, one of those must be the overall
screen background colour.

To overcome this, enable Multi-colour Mode. This gives each
dot within a character square the ability to be displayed in one of
any four colours. The screen colour, or background colour zero
(memory location 53281), background colours one or two
(locations 53292 and 53283), or the character colour accessed from
the colour.

It is necessary to make one sacrifice, in terms of horizontal
resolution, as each dot is now double its original width, or, to put it
another way, the user could have control over a resolution area of
160 x 200 dots.

To enable Multi-colour Mode, set bit 4 of the Vic il control
register, which sits at memory location 53270 ($D016) to contain a 1,
which is done with the following POKE command:

POKE 53270, PEEK(53270) OR 16

To turn it off, the same bit must be set to 0 (zero) which is done

15

by:
POKE 53270, PEEK (53270) AND 239

Once you have decided to have a multi-colour display, it is the bit
pattern that goes to make up the character there, determining what
colour(s) that character will be displayed in. Sticking to letter ‘A,
which in normal mode is made up as follows:

LETTER BIT DISPLAY
- 00011000
00111100

o 01100110
01111110
o 01100110
oo 01100110
o 01100110

00000000

In normal character mode, or standard high resolution mode,
the screen background colour shows where there is a ‘0’ and the
character colour selected for that square where there is a ‘1", In
multi-colour mode, in which individual dots cannot be addressed
and, instead, pairs of dots are addressed, the resultant display
becomes:

LETTER BIT DISPLAY
XXYY 00 01 10 00
2777 00 11 11 00

XXYYXXYY 01 10 01 10
XXZZZZYY 01 11 11 10
XXYYXXYY 01 10 01 10
XXYYXXYY 01 10 01 10
XXYYXXYY 01 10 01 10

00 00 00 00

Wherever there is an XX, background colour ‘one’ will be
displayed. YY denotes background colour ‘two’ and ZZ denotes the
character colour. Spaces Wwill be displayed as the screen
background colour : four colours per character square.

In other words, bit pair 00 represents the screen colour, 01
background colour one, 10 background colour two, and 11 the
character colour. To recap, these are memory locations 53281,
53282, 53283 and the colour RAM respectively.

16

Thus, to create a multi-colour display, first of all turn that mode
on, then simply decide what colour everything is to be. The
following program should serve as a demonstration of this:

10 PRINT “(CLR)XXXXXXXXXX"” : REM CLEAR THE SCREEN,
THENPRINT 10X'S

20 POKE 53281,7 : REM SET BACKGROUND COLOUR ZERO TO
YELLOW

30 POKE 53282,2 : REM SET BACKGROUND COLOUR ONE TO
RED

40 POKE 53283,14: REM SET BACKGROUND COLOUR TWO TO
LIGHT BLUE

50 POKE 53270, PEEK (53270) OR 16 : REM TURN MULTI-COLOUR
MODE ON

60 A=55296 : REM START OF COLOUR RAM

70FOR1=0TO9: REM START OF LOOP

80 POKE A+1,14 : REM BLUE ‘CLAUSE IN MULTI-COLOUR MODE
90NEXT | : REM NEXT STEPIN LOOP

This program clears the screen and prints up 10 successive X's,
sets the various background colours, and then changes the colour
ofthe X's atthe top of the screen.

Of course, when in Multi-colour Mode, one is no longer putting
integer numbers in memory locations in colour RAM, but actually
referencing the bit registers in those locations. Changing one
register can instantly change every dot drawn in a particular colour.
Good for fast action arcade graphics!!

The following program will show how this works: changing
background colour register number ‘one’ changes everything
from (in this case) red to various random colours.

10PRINT “(CLR)” : REM CLEAR THE SCREEN

20 POKE 53270, PEEK (53270) OR 16 : REM TURN ON
MULTI-COLOUR MODE

30 POKE 53282,10 : REM BACKGROUND COLOUR ONE SET TO
RED

40FOR = 1TO999: REM START OF LOOP

S50 PRINT ‘X’; : REM PRINT ‘X' CHARACTER ON SCREEN

60 NEXT | : REM 999 TIMES I.E. FILL UP THE SCREEN

70 A = INT(RND(0.5)*16) : REM PRODUCE A NUMBER FROM 0 TO
15

80 POKE 53282,A : REM CHANGE BACKGROUND COLOUR 1

17

RANDOMLY
90 FOR J = 1TO 1000 : NEXT : REM WAIT FOR ABOUT 1 SECOND
100 GOTO 70 : REM CHANGE COLOUR AGAIN

This program clears the screen, prints 999 X's with red
backgrounds, then changes it all to a random background colour.
After a delay of approximately one second, the display changes
again and carries on doing so until the ‘RUN-STOP’ key is pressed.
Pressing ‘RUN-STOP/RESTORE' should set everything back to
normal again.

Knowing now how to create multi-colour displays, and how, by
selective use of colour RAM, to have a mixture of muiti-colour and
normal high resolution characters on display leaves the third colour
option, namely Extended Colour Mode.

18

USING EXTENDED COLOUR MODE

This is the third colour mode of display, one which cannot be used
with Multi-colour Mode graphics as it affects the whole screen.
Thus it must be used with care, and for special circumstances only.

It gives the ability to control not only the background colour of
the screen, but also the background {and foreground) colour of
each character displayed on the screen. For example, a red
character with a yellow background displayed on a blue screen.

Familiar registers are used to store information about the chosen
colours, namely background registers 0, 1, 2 and 3 (memory
locations 53281 to 53284 respectively), with each register capable of
being set to any one of the usual 16 colours. Not going into
multi-colour mode here, the colours all have their true displays, i.e.
11 isthe first shade of grey rather than cyan.

To select the foreground colour of a character, use the usual
colour RAM to switch from one colour to another.

There is one limitation in using extended background colour
mode (to give it its full title) and this is that only the first 64
characters stored in ROM, or the first 64 characters in the
programmable character set, can be accessed since two of the bits
of the character code are used to select the background colour.

To give an example, ‘POKE 1024,24' and one would expect a
normal X to appear on the screen. ‘POKEing’ 1024 with 88 would
usually bring up a reverse field X, but with Extended Colour Mode
on, this is not the case, giving instead the same X as before, the
most awkward to implement. Still, a certain amount of
experimentation should soon see some very colourful displays.

To affect the colour of a character ‘POKEd’ onto the screen with a
character code range of 0 to 63, alter background colour register 0,
the range of 64 to 127 for register 1, 128 to 191 for register 2, and
finally 192 to 255 is changed by background colour register 3.

Before doing this, one must turn the Extended Background
Colour Mode ‘on. This is achieved with the following command:

POKE 53265, PEEK (53265) OR 64

19

and turned off with:
POKE 53265, PEEK (53265) AND 191

This sets bit 6 of the Vic |l register at 53265 on and off (or to 1
and O) respectively.

The following program should serve to show how all of this
might work in practice.

10 PRINT “(CLR)” : REM CLEAR THE SCREEN

20 POKE 53265, PEEK (53265) OR 64 : REM ENABLE EXTENDED
MODE

30 POKE 53280,1 : REMWHITE BORDER

40 POKE 53281,0 : REM BLACK SCREEN

50 POKE 1024,44 : REM PUT AN X IN TOP LEFT HAND CORNER OF
SCREEN

60 POKE 55296,1 : REM CHANGE ITTOWHITE

70 POKE 53282,7 : REM SET BACKGROUND COLOUR 1 TO
YELLOW

80 POKE 1024,88 : REM WHITE X WITH YELLOW BACKGROUND
ON BLACK SCREEN

90etc.. ..

So, simply by changing the appropriate background and
character colours the user may have a bewildering variety of
colours on display atthe same time.

20

REM ¥OU CAM REMOVE ALL REMS
REM % SET TO LOMWER CASE AMD SET VARIABLES

20 POKES3272.23:122=52281 1X=54272

128
120
260
218

220 REM

238
240
25e
2608
274
28@
234
20
3
=20
3326
34@
2509
3€0
jcirgc]
2e0
290
400
410
420
4309
448

FRINT"D Ak DEMO Mok ok
REM % SWITCH TO EXTEMUDED COLOUR MODE
POKES2265 . PEEK(S3265)0R64
FORD=1TOSEE tHEXT sREM # DELAY LOOP

REM Az¢="SHIFT SPACES/FOUR’SHIFT SPACES®
REM A4f£="SHIFT SPACES’CHAMGING COLOURS’SHIFT SPACES"
A1$="COMMODORE COLOUR POMER ON YOUR 64"
Azg=" P P

A3$="2 BACKGROUND Lh
F4s="9 A LT e -
FEM % SET BACKGROUNG COLOUR REGISTERS
POKEZZ .9

FOKEZZ+1 .4

POKEZZ2+2 .7

POKEZZ+3.9

FORD=1T01999 tHEXT 1REM % DELAY LOOP

REM % LOOP TQ SET PACK AND FORE COLOURS

FORI=GTO100
4 ¥ SET CURREMT CHARARCTER COLOUR

POKEE46 , CI+4)AMDLS
IFCIANDR>=BTHENPRINTRL$
IFCIAND2)>=1THENPR INTAZ$
IFCIAND3Y=2THENFRINTAZS
IFCIAND2)=RTHENPRINTA4$
POKEZZ . I

POKEZZ+1.1+2

POKEZZ+2,I+3

POKEZZ+3,.1+1

FORD=1TQ108 :NEXT

HEXT

FORG=ATOR :FOKEZZ+G, 15 INEXT
FORD=QTO2000 sHEXT
FORI=0TO7E

2=22+CIAMD3Y :REM * DRAKS MOVING BARS
POKEZ.12sREM ¥ DRAW BAR
FORO=1TO260RA tNEXT

FOKEZ .15 :REM #% UNDRAW EARS
MEXT

REM % RESET COLOUR AND EXIT
POKES3272 .21 :POKES3265 , PEEK(S32652AMND121
END

RERDY .

21

106@ REM *#*!**#***#**#**####*##**#*##*##*#***#*#

1510 REM * LOADER FOR A MULTI-COLOUR HI-RES ¥
1026 REM % MACHINE CODE ROUTIMNE TQ SET UP THE ¥
1020 REM % HI-RES SCREEN AMD PLOT A POIMT USING *
1048 REM * THE COLOURS AVAILABLE. ¥
1950 REM % ¥
1060 REM ¥ THE ROUTIHES BRRE CALLED THUS: ¥
1870 REM ¥ SC=SCREEN COLOUR ¥
1620 REM #* BC=BORDER COLOUR L4
19902 REM ¥ sYS(28672>,5C . BC ¥
1189 REM % THIS IS TO SET UP THE HI-RES SCREEN ¥
1119 REM !*******#*#**#!**#*#!**#*#**!****!#*****
1126 REM * PC=POIMT COLOUR :FROM 8-13 #*
1128 REM % ER=ERUSH NUMBER :FROM @-3 *
1146 REM ¥ 1 O=EACKGROUMD COL.. *
1159 REM ¥ POKE 828.ER *
1160 REM ¥ FOKE 829 .PC ¥
117@ REM ¥ syaceeazad X, Y *
118@ REM ¥ THIS PLOTS A POIMT OH THE SCREEM AT %

1190 REM % COORDIMATES ¥.¥Y WHERE 0.2 IS TOP LEFT¥
zea REM !***t**#*******ﬁ#***##*!#*#***#****#**#*

2p0A 1=296721T=0:ER=Q

216 READ A

229 IF A>255 THEM 2560

2p2za IF A=-1 THEH 2062

2R4@ FOKE I.A:T=T+A

2a50 I=I+1

2868 GOTO 2918

2568 READ A%

2518 IF T=A THEHM PRINT"LIHES At 0K, "iGO0TO 2528

2520 FRINT®LIMES "A$" EMTERED IMCORRECTLY "T.A:ER=1

2520 T=0:60TC 2018

2006 [=28928:T=0

2a10 READ A

220 IF AX2SS THEN 3500

2630 IF A=-1 THEH 498@

3040 FOKEIL A:T=T+A

2050 I=I+1

2E6A GOTO 2910

256@ REARD A%

251@ IF A=T THEM FRIWT"LIHES "AET 0K, " IGOTO 3538

as20 PRIMTULIHES "A$" ENTERED IMCORRECTLY “T.AIER=1

IEZA T=6:G0T0 2616

4000 IF ER=1 THEM EMD

4610 POKESL , G:FPOKES2,112

4220 FOKESS.B:POKESE.112

4026 CLRHEW

268000 DATAR2.253.174,32,.235.183.128

20014 OATA141.22.202,165.,20.141.33

20829 DATAZAS,32.49.112.32.88.112

22

20830
20249
Zpasa
206859
20er7a
20829
28029
20995
zniaa
20118
20128
29138
2140
2915a
21&a
28178
2912a
22129
20195
28z
2az21e
20229
202328
28248
0093
20919
el jopeda]
3042
zead4n
20059
pelolal o]
20074
200ea0
20639
2Ra9s
20100
a1
238128
2013a@
30140
belad galc)
28160
2e1ve
20139
30198
30125
peda i)
39210
2Rzza
20230
20246

DATAZ2.127.112.172.17.268.3
DATAB2.141.17.202,.173.24.208
OATAS.2.141.24.,282,173.2
DATAZAS,.2.16.141 .22 .2828 .96
DATA1EA,.0.1€9.£4,133,87.169
DATAE2.133.83,.1659.0.143,87
DATALES,87.240.5,192.87.76
DATA 7511, "2088@8-20020"
DATASS.112.198.28. 165,868,201
DATA21 .240.7.162,.255,133,87
DATATE.59.112.96.1€0.8,.1€9
DATAR221,133.87.169,.7.133.88
DATAL169,.2.145.87.165,87,240
DATAS.193.87.76.92.112.192
DATAES.165.688.201.3.240.7
DATA169,.255.133,87.76.93.112
DATASE.160.0.169,.231,132.87
DATA169,219.133.88.162.0,145
DATA 8541 ."Zaige-2015a"
DATAS? .165.687.2408.5.198.,87
DATAR7TE.127.112.198.88,1€5,88
DATAZA1 .215.240.7.169,255,133
DATASY .P6.137.112.9€

DATA 23461."20200-20238" -1
DATA32.253.174,.32.285.183. 165
DATARZA.132.82.165.21.,122.99
DATAL2E.201 .260.144.2.169,199
DATA133.21,.165,80.,201.1.144
DATARLE.208.6.1£5.89.201 .54
DATA144.8.162,.1.132,.839,169
DATAES . 123.9Q.165,.89.41.7
OATA133.94.169.7.56.229.94
DATA133.94.79.94.€,24 165
DATA94.24.105.1.132,95.165
DATA 7708 . "20606-36090"
DATA94,.240.2,.162,162.1.10
DATALZE . 208 . 252.240,2,1€69.1
DATA132.94.165.95.248,9,168
CATALES9.1.1@,126.208,252,240
DATA2.162.1.12R3.95,162.0
DATA123,.92.133,88,122.87.165
DATA91 .41.7.133.93,165,91
DATA?4.74.74,1323.21.160.5
DATA24 .18 ,32,.88, 136,268,243
DATR123.87 . 165,21, 166.2.24
DATA FEE7."30100-30128"
DATAL1A, 126,265,251 ,1233,31.,24
DATA191 .87.133.91.145.23.183
DATAS , 12%.92.160,3,24.,7A
DATASA, 192,89, 136,208,248, 165
DRTAS9.133.87 . 165,809,133, 88

23

ap25@ DRTA160.3.24.6.87.38.88
Za2en DATALZ6.268.242.160.8,.24 163
an27a DATR21,191.87,.133.87.165.92
20220 DATALIGL .85, 133.688,1326,205,.240
30290 DATA24 .165,93.101 ,87,133.87
2@29% DATA 77232 ."30200-30292"
20300 DATR169.9,101.88.24,162.32
20310 DATA1G1 .86, 133,.88,24. 165,83
SBBQB,DHTﬁlai,91,133.91.169.8.1B1
el i) DATA%2.133.92,173.60.3.281
3@34@'DHTHB,24B,13,2EI.1.240,32
29350 DATAZO1 .2,240.74,201.3,240
20368 DRTA1Q4 .96 ,162.0,165.94 .73
20370 DATAZSS, 133,94 .165,95,73,290
30%00 DATAR133.%5.177.87.37.94,37
20290 DATASS,14%,.87.96,160,8.1€5
30295 DATA 7552, "20300-30398"
0408 DATRSS.73,255.13%,95.177.87
2M4108 DATAS.24.37.95.145.87.162
2p42¢ DATAR4.24.101.92,133,92.14
20420 DATAG1.3.14.61.3.14.61

20440 DATAR.14.61.3,177.91.41
20450 DATA15.24.1@9.61.3,145,.51
2046@ DATASE.160.0,165.94.73.205
2p470 DRTA123.94,177.87,37.94.5
Q480 DATASS,145.87 .24, 169 .4, 181
beinlaciog DATAS2.133.92.177.91 .41 .240
20495 DATA 6023 ,"30460-30450"
20500 DATA24.199.61.3.145.91.96
20516 DATR166.0,177.87.5.94.5
20520 DATARS.145.87,169.216.24.101
20520 DATAS2.133.92.173,61,3.145
20540 DATAR1 .96

20556 DATA 2780 ,"305e0-30540" .1
READY.

24

1006
1918
1826
130
1649
16852
1958
1270
1eze
1996
1100
1118
1120
1129
1140
1158
11€0
1170
1186
1198
126a
1219
1229
1238
1248
1250
1268
1270
1299
1290
13200
1219
1228
1238
1340
12502
1260
1ava
1326
1398
1408
1418
1420

1338
1450
1466
1479
1420
1490
1500

REM sk dpp i b bk e
REM % THIS PROGRAM IS A SKETCHIWG MULTI- *
REM % COLOUR PALLET. IT ALLOWS YOU TO PLOT *
FEM % PQINTS OM TO THE SCREEM USING THE *
FEM % CURSOR KEYS INM MULTI COLOUR MODE. ¥
REM % THERE ARE TWQ SECTIOMS OF THE PROGRAM¥
REM % THEY ARE RS FOLLOWS *
REM ¥ COMMAND SECTION: IM THIS SECTIOM, %
REM % THE USER CAM DEFIME WHICH COLOUR TO *
REM % WHICH “PRIMT BRUSH’. EXIT PROGRAM. OR¥
REM % CHOOSE TO PLOT POIMTS. *
REM % DEFINE COLOURS IS SELECTED BY *
FEM % FRESSIMG °F17. MOVE THE CURSOR OVER *
REM ¥ THE PALLET USING THE KEYS

REM % CURSOR RIGHT TO MOVE IT TO THE RIGHT *
REM % CURSOR DOWN TO MOVE IT TO THE LEFT %
REM % WHEM THE CURSOR IS IN POSITION,. *
REM % PRESSIMG "F37 SELECTS THAT COLOUR. *
REM % THEN OME OF KEYS 1.2.3 ARE PRESSED TO¥
REM % SET THAT COLOUR TO THAT EBRUSH. *
REM ¥ THE SECOHD SECTIOW IS THE.PLOT *
PEM % TO PLOT POIMTS, PRESS THE KEY "P” %
FEM % POINTS SECTION.

REM % A BRUSH MAY BE SELECTED AT AMY TIMe *
REM % EY FRESSING THE CPORRESFPONDING KEY. ¥
FEM % THE CURSOR KEYS MOVE THE HIRES CLIRSOR%
REM % TO EXIT PLOT MOOE. FRESS THE RETURM #
REM ¥ KEY. ¥
REM * TO EXIT THE FROGRAM COMPLTELY. *
REM % PRESS RETULIRN WHEM IM COMMAND MODE *
REM * ¥
REM ¥ THIS PROGRAM USEE THE MULTI-COLOUR *
REM % HI-RES MACHINE CODE ROUTINES. *
REM #8bANR kbR R N RO NRNOK OOk K
B=8192

INFPUT"IECREEN COLOUR" N
SYER8E72. NN
DEFFNP ¢ Z2Y=E+ INT (X80 %S+ INT CY/8) %320+ (YANDY?
DEFFNK(Z2Z>=SS296+INT (X/30+INT (Y 81 %40
GOSUB 197@:GOSUR 1870
GETAS : IFA$=""THEN1420
IF As="m" THEN 1420
IF A$=CHR$C132> THEM 1358
=@
IE Bgznpa FHEN =
IF A$="2" THEM BR=2
IF A$="32" THEN ER=3
IF As$="P" THEM 1670
GOTQ 1400

I=9

Y=192 :X=1%16+40

25

1518 POKE FHK(@>.H

1528 FOR J=1 T0 5@

1538 GET AL:IF A$O""THEN 1559
154@ NEXT T

1552 POKE FHK<@> .1

156@ IF AF="N"THEN 1=1-1

1570 IF As="M"THEHM I=I+1

1528 IF A$="M"THEN CL=I:POKE FMKC®> . 1:60TO 1620
1596 IF 1<8 THEM I=0

1500 IF I>18 THEN I=135

16108 GOTO 1508

1620 GET A$:IF RE="" THEM 1620
163@ IF A$="1" THEH COL<1>=CL
1649 IF A$="2" THEM COL<2>=CL
1650 IF A$="3" THEM COL(3)>=CL
1660 GOSUR 1870:G0TQ 1408

1670 K=xKXiv=YY

1680 POKER22.0:15YS22923.X.Y

1696 GET RA¥

17ea PDKESZB.ER:PGKESZS.COL(BR)lSVSZSQZB.XLV
1710 IF A$="" THEM 1688

172@ IF A$="@" THEM BR=01G0TO1680
1730 IF A$="1" THEH BR=1 :GOTO1630
1742 IF A$="2" THEH ER=2:G0T01£80
1750 IF A$="3" THEHN BR=2:60T01€30
1760 IF A$="N" THEM Y=Y+l

1776 IF Y2183 THEM Y=183

17e0 IF As=""1" THEM ‘Y=Y-1

1790 IF ¥<@ THEHW Y=@

1epe IF A="m" THEM X=X+2

110 IF ®>219 THEHM X=212

1820 IF As="H" THEN X=X-2

1220 IF X4<O THEN X=@

1840 IF A$=CHR$(12> THEM ®R=H Y'Y=y 1G0TO 1400
1e5a PDKESQ@.BR:POKEGZS.COL(ER)lSVS28928.X.V
1860 GOTO 1480

1879 FOR I=1 TO 3

1920 Y=194:1K=16%1+42

1290 POKEFHK (@) . COLCID

19268 FOR J=@ TO 7

19168 POKEFHPCE) 285

1920 Y=v+1 tNEXT J

1928 HEXT 1

1240 RETURN

195@ POKES22ES .27 tFOKES3272.21
1960 POKESSZ?Q.ZGG:POKEﬁSZ&l.6|PRINT"H“=EHD
1970 FORI=OTO1S

1920 ¥=16¥1+40

1950 Y=192 1POKEFHK(®) . I

2e00 FORJ=8 TO 7

2018 FOKEFHP(@),25%

26

2820 Y=Y+1

2838 NEXT J
28409 MEXT I
2858 RETURN
RERDY.

This program will sometimes appear to be faulty. It is in fact
working, but the pixel colour needs to be changed so that it is
visible (i.e. press “1°).

27

SJOIHAVHO

HIGH RESOLUTION GRAPHICS

Given the amount of memory ‘on board’ the 64, it is a pity that there
are no High-Resolution Graphics commands directly available to
the user. In this sectionis a basic loader for a standard Hi-Resolution
graphics package. The ‘package consists of four routines in
machine code which, when called with the appropriate parameters
‘POKE’d’ into the 64 and the correct ‘SYS’ call, will:

(1) Set up the hi-res screen,

(2) plot asingle point,

(3) plot aline between two points,

(4) and plot characters on the screen atany co-ordinate.

PRINCIPLES OF HI-RES GRAPHICS

The rest of the section takes a look at how the hi-res routines are
done. This will be split up into the four routines as mentioned
above.

(1) Set up the hi-res screen:
Thisis the easiest of the routines, it can be divided into three parts:

(a) The first part sets the video memory to the desired colour
combination. The hi-res colours are taken from the character
displayed on the video screen, the screen colour is taken from the
lower four bits, and the point colour from the upper four bits of the
character stored in the RAM. Thus, if character 1{'A’} is used
then the displays at that character position would be a white
background with black points. To determine the character number
from the required colours, if we let SC=the screen colour, and
PC=the point colour, then the character number to be ‘POKE'd’
would be SC+16*PC.

(b) The second part clears the hi-res area of memory. This is an 8K
block where points will be plotted. Using back 0, this memory block
is from 8192 {$2000) to 16191 ($3F3F). To clear this a loop for
8000 will be needed and zero will have to be ‘POKE’d’ into each
location in the hi-res area.

(c) The final part sets up the registers to intialise the Hi-Res mode.

30

There are two ‘POKE's’ required to do this, these are: POKE
53265,PEEK(53265)OR32 which puts the 64 into bit mapped mode
and POKE 53272,PEEK(53272)OR8 which places the start of bit map
memory at 8192.

BASIC VERSION OF SET UP ROUTINE

18
26
2
40
Sa
&0
va
pafa)

ol

SC=12PC=6

FOR I=1624 TO 2623

POKE I.SC+PC#16

MEXT

FOR I=8192 TO 16191

POKE 1.0

MEXT 1

FOKE 53265 .FEEK(33265>0R22
POKE 953272.PEEK(S53272)0RS

RERDY.

31

in Multi-Colour Mode, there is a choice of four colours for each
character. The video memory contains information on two of the
colours, the colour nybble memory indicates the third colour and
the screen colour register (53281) is the screen colour. An extra
'POKE’ is required to select Multi-colour Mode, this is: POKE
53270,PEEK(53270)OR16.

(2) Plota point at the desired X,Y co-ordinate.

This routine involves calculating the location in the bit mapped
screen memory where the point is to be plotted, the bit required
and then ‘POKEing’ to that byte to turn on the calculated bit.
Although the screen and colour combinations have been entered in
the set up routine, other colours may be required for plotting, rather
than the point colour previously set up. This is done by calculating
the byte on the video memory where the point occurs and
changing the lower four bits to the required colour vehicle. If the
lower four bits are changed, the character position containing the
point will have a different background colour. A last note on this
routine is that the convention of 0,0 being TOP left corner instead of
boﬁonﬂeﬂcornerhasbeenusedforeaseofcmcuhﬁon.

All calculations are showninthe following basic listing. Note that
mbpmmmnwmndwmkmm@nh%b%nWMMﬁmemed
understanding of the techniques.

1099 DEF FNP(ZZ)=8192+INT(X/S)*8+INT<V/8)*328+(?HND?)
191@ OEF FNCCZZ)=1024+ INTCR/8)+INT(¥/8) %40
1920 X=<x COORDD:Y=<Y COORD>

1330 AD=CADD OR DELETE POINT>

1048 PC=<POINT COLOUR>

1@Se IF X<@ OR X>319 THEN 1168

1960 IF ¥<@ OR ¥>199 THEN 11€8

1970 IF AD=1 THEN 111@

1Be6 BI=7—-(X¥AND?Y

1990 POKE FHP(@) ,PEEK¢FNP (B> >OR21BI

1198 G0TO 113A

11168 BI=7~(XAND7>

1126 POKE FNP¢@) ,PEEK(FNP (8> YAND2S5- (2181
1129 SC=PEEK<FNC(@3>AMD1SD

1140 COL=SC+PC¥16

1158 POKE FHC(<®>.COL

1166 RETURH

READY.

32

in Multi-Colour Mode, each point takes up two bits of the bit map
like this:

BITS COLOUR FROM

00 Screen colour register (63281) (no point),
01 Upper 4 bits of video memory,

10 Lower 4 bits of video memory,

1 Colour nybble memory.

This means that the byte calculation stays the same but the bit
calculation is a little different. Instead of the bit calculation being
7-(XAND?7), the easiest way is to calculate the lower of the two bits
and then plot each point. The calculation is BI=INT(7-(XAND7)/2)*2
and the two bits to be plotted are Bl and Bl+1. Because of the
double byte plotting, the x resolution has been halved from 320
pixels to 160 but the y resolution stays at 200 pixels.

There are two more routines, they plot a line and plot a character.
Both routines use the point plot routine to display on the screen but
each has useful calculations that must be mentioned.

(3) Plot a line between two sets of co-ordinates.

2609 Ki={X START OF LINED>:Y1={Y START OF LINED>
2818 X2=CX END OF LINE>:Y2=<Y EMD OF LIMNE>
2828 AD=<A0D OR DELETE LINE> FC=<{COLOUR OF LIME>
2020 XD=X2-X1

2840 YD=Y2-41

2050 AB=1:A1=1

2060 IF YDCO THEN RO=-1

207a IF ¥D<O® THEM Rl=-1

2880 XE=ARSC(XD) :YE=ABS (YD) :Di=XE~YE

2990 IF DI1>=8 THEM 21720

2160 S@=-1351=0:L6=YE :SH=XE

2110 IF YD>0 THENM .S@=1

2120 G0TO 215a

2138 20=0:81=~1:LG=XE 1SH=YE

2140 IF H0O»=8 THEM S1=1

2150 TT=L0:TS=SH :LiD=L.G-5H :CT=SH-LG~2

2168 D=2

2176 XH=X1:¥Y=Y1

210 GOSUB 1035@

2199 IF CT>A THEMN 2220

2208 CT=CT+TS :X=X+51 1v=Y+S0

2218 GOTD 2238

2228 CT=CT-UD:iX=X+A11Y=Y+AB

2238 TT=TT-1

2248 IF TT<=0 THEM 22¢0

22568 GOTO 2188

2268 RETURH

READY .

33

The line plot routine is no different whether in Standard Hi-Res
Mode or in Multi-Colour Mode, but the character plot routine must
be enlarged on the x axis by changing line 330 from X1 =X1+1to
X1=X1+2.

(4) Plot a character at x,y screen co-ordinates with the top left corner
of the character at these co-ordinates. This routine converts the
ASCII character values into the equivalent ‘POKE’ value, reads the
character from the character ROM, and plots each point of the
character onto the screen. It must be noted, however, that none of
the Commodore graphics characters or the lower case characters
are available. Other than that, any letter, number, or other standard
character is available.

ap0a DEF FHP(ZZ)=8192*IHT(X/B)*S+INT(V/8)#326+(VHND?)
4010 A$="<CSTRINGD" iX=<X COORDD 1Y=CY COORD>
4020 XX=CX STEP>:y¥=<Y STEFD>

4620 FOR I=1 TO LEMCASD

4040 B$="MID$(H$.I,1)=B=GSC(B$)

4250 Yi=Y

49e0 IF BC322 THEHW MEXT 1:GOTO 399

an7o IF B8>31 AND BG4 THEN A=B

4020 IF BCE2 ARD Eg>96 THEM A=B-64

4299 IF B>9S THEN MEXT 1:60TO 220

4108 A=F¥S :GEH=A$53248

4118 FOR J=@ TO ¥

4128 X1=X

4128 POKE 56324 ,FEEK (56334) AND2T4

4149 POKE 1.PEEK(1>AND251

4150 Z=PEEK(GENCIM>

4160 POKE 1.PEEK(1>0R4

4172 POKE 56234 , PEEK(56234>0R1

4120 PH%Z=12%2

4198 IF ¢PHXAMDZ)>=G THEN 4210

4200 FOKE FNP(Q).PEEK(FHP(G))ORZT(?—<XIHNO7)>
4210 FHE=IHT(PHZ 2>

4220 IF PHX<1 THEN 4250

4230 XKi=xK1+1

4240 (OTQ 4198

4256 vi=Y1+1

4268 HEXT J

4270 X=x+R¥1r=i+ry

4220 HEXT 1

4290 RETURH

ca

118
120
120
140
159
160
17e
129
190
269
21
220
238
240
299
26a
276
280
296
308
216
220
230
240
asa
260
ave
280
2920
400
416
429
420
440
450
450
470
420
490
508
510

REM scksbiobpsokiokioni ok drfrsoniorik ook
REM % THIS IS THE COMPLETE HI-RES PACKAGE. *
REM % IT COMPRISES OF ROUTINES TO *
REM % 1> SET UP GEAPHICS MODE. *
REM ¥ 2> PLOT A POINT AT THE LDESIRED X.Y #
REM #* COORDIMATE OM THE SCREEN WHERE ¥
REM #* TOP LEFT COORDINATES ARE 6.0, *
REM % 3> DRAM R LIME BETWEEN TWO POINTS ON *
REM * SCREEH, »
REM¥ 4> PLOT P CHARACTERS OM THE SCREEM »
FEM*® AT THE DESIRED X.¥Y COORDIMARTES OF *
REM¥ THE TOP LEFT POINT OF THE CHARRCTER.*%
FRE D b b A R A A N R N Ao el e ol
REM¥ 1> THIS ROUTINE IS SPLIT UP INTO THREE *
REM#% PARTS,. THE FIRST CLEARS THE 8K BIT *
REM* MAP MEMORY. THE SECOND SETS THE *
REM# COLOUR COMEBINATIONS FOR SCREEN AND %
REM¥ POINT COLOUR., AMD THE THIRD SETS THEX
REM#*: REGISTERS FOR BIT MAP MODE. *
REM% THE ROUTIME I5 CALLED BY
REM* POKE £9.SC+16#FC (SC=SCREEN CDLGUR)*
FEM*% CPC=PQINT COLQUR> ¥
REM#* EYSC(ZBET2D. *
REFM¥ THE FIRST TWO PARTS MAY BE CALLED OH¥
FEM¥ THEIR QWM WITH *
REM¥ A> SYS(28FA4D *
REM# B> THE AEOYE POKE FOLLOWED BY *
REM#* SYS(28743) *
REMSRRHON RN AR R OR R R
REM# 2> THIS ROUTIME PLOTS A POINT ON THE *
REM¥ SCREEN WITH THE DESIRED COLOUR ¥
REM¥ IT IS CALLED BY *
REM# POKE 89 . X-INT (X /256 #2556 *
REM¥ FOKE 20, INT(X/2562 *
REM¥ POKE S1.% ¥
REM* POKE 784 .RD ¢AD =1 FOR PLOT. > %
REM¥ < =2 FOR DELETE> ¥
REM# FOKE 879.PC *
REM¥ sSYsScaara2) L
RE M3 A A RN RN R R MR A O Nk
REM#* 3> THIS ROUTIME DRAMS A HI-RESOLUTIOH %
REM* LIME OM THE SCREEM BETHWEEN THO SETS *
REM* OF COORDIMATES IH THE DESIRED COLOUR¥
REM¥% IT IS CALLED BY *
REM¥ POKE €28.X1-INT(X1/256>%256 *
REM#* FPOKE S29. INT{X1-256> *
REM¥ POKE 838.%Y1:FOKE 831.0 *
REM¥ FOKE 832 .X2~INT (42256) %256 *
REM¥ FOEE 832, INT(X2/256) *
REM¥ FOKE $£324.Y2:POKE 835.0 *
REM*¥ FOKE 78€.RD %

35

520 REM¥ FOKE &79.PC ¥
526 REME SYS(29158 ' *
549 REM**#m#m***##!##*##&*##W***!**#&*&*##*&*##**
== REM# 4> ROUTINE TO PLOT R CHARACTER o4 THE *
S50 REME SCREEM MITH %.Y THE TOP LEFT CORNER ¥
570 REM¥ OF THE CHARACTER. *
500 REM* IT IS CALLED BY ¥
5aQ REME For I=1 TO LENCES$D *
€00 REM¥ As=MI0$<ES. I,.1D *
616 REM#® FOKE S66 .%-INT(X/256) %256 »
520 REM¥ POKE 2657 . INT(X /2562 *
€30 REM¥ POKE 86E8.Y:FOKE 8€2.8 *
640 REM* POKE S7A.ASCCASED *
650 REM® POKE €71 .RM *
660 REMX POKE 979.PC *
670 REM¥ POKE 784 .AD *
£50 REM* SYSC23749) »
€90 REM¥ WK+ 1YY Y *
700 REM MEXT 1 *
716 REM¥ *
720 REME WHERE Bf 1S THE CHARACTER STRIMG TO *
T30 REM¥ EE PLOTTED, XX IS THE X STEP BETWMEEN®
740 REM¥ LETTERS FROM LEFT TO RIGHT AND ¥¥ 15%
7SO REM¥ THE ¥ STEF FROM TOF TO BOTTOM. *
TER REM¥¥¥**###****ﬁ##****##*#*#**ﬁ#**&****#*###*
1666 1=28672 tER=0:CT=01FPRINT "

1010 T=0

1820 READ A

1042 IF FA>ZSS THEN 20900

1950 IF A=-1 THEM 32069

1060 T=T+A:FOKE I1.A

1079 I=1+1

1980 GOTO 1920

2008 REM

c@ia IF T=A THEHW 2628

Za12 PRINT'LIHES"20008a+CT"-":

2014 PRINT2AEQE+CT+O0: T A1ER=1 1G0T 2039

znz PRIHT"LINES“ZGQ@G+CT"—"20@@@+CT+96"0.K.ﬂ“
2020 CT=CT+1008

40 GOTO 1918

sa0n 1F ER=1THEHEMD

ap1e POKES1 .9 :POKES2.112

3020 POKESS . @ :POKESE , 112 :CLR 1NEW

2RO DATA72.138.72.152.72.32.32

20010 DRTAL1Z2.52.71.112.173.17 .208

20020 DATA.32.141,17.208.173,24

20028 DATAZRE .S
DHT9168.194,1?@.194.169.8.169
DRTH64.133.8?.169.63.133.88
DHT9169.8.145.8?.165.3?.249
DHTHS.iSS.S?.?6.42.112.198

20040
pfc Lokl
2960
20076

36

8,

141.24.266.104

20034
260096
20935
208108
ze11e
20120
20136
28148
281358
20168
20178
z2e1&0
28130

20135
20200

2ez19
28220
2823R
28248
20256
20260
20279
20280
20232
29295
ez
283210
20328
20330
20240
2250
203e0
28371
283220
20390
203293
29460
28418
26420
20438
20449
20459
2e462
20470
28438
28490
20435
20500
28510
2520
20538

DATASS.165.88.281 .31 .249.7
DATR1€%.255.133.87.76.42.112
DRTA7S1S

DATR9E ., 1€66.0,169.231,133,87
DATA169.7.133.28.165.29,145
DATASY 165 ,57.246.5,198 .67
DATA7E.81.112.198.88.165.88
DATARZ@1 .3.24@.7.1€9.255,133
DATR37 .76.81.112.96.72.152
DATRV2.138.72.160.9.24,152
DATA132,95.165.50,.201.1.144
DATAR1Z2.2681.1.209.6.165.89
DATARZ2D1 .64 .144.2.239.95,165

DATASOES
DRTAZ1 .201.208.144 .2.230,93

DATARL1AS.95,.248.€.1684,170.104
DATA162,184 .96, 165,.82.41.7
OATARLER .94 . 1A9.7.56.229.94
DATAR132.94.242.9,162.163,.1
DATALA, 136,208,252 .24@.2.1€9
DATAL.132.94.165.91.41.7
DATAR1I22.83.165.91.74.74.74
DATA133.95.1232.52,141.103.2
DATA169.8.12%.91.133.96.,141
DRTATA3S
DATARL1IA.3.1660.6.24,6.95
DRTAL7E.7.6.96. 136,208,246
DATR248 .6.6.96,. 280,96 .208
DATA245 .24 .165.21.101.953,133
DATAS1 . 16%.92.161.96,132.92
DATA168.3.24,70.90.176.,7
DATATE &2, 136,208 ,.24€,240,10
DATATH .83.165,89.2,128.133
DATARS9,208,.241 . 165,879,141 .108
DATAZ.166.3.24.6.83.176
DATA742%

DATA?7 .6.90. 136,208,245 ,248
DATAS .£.90.230 .90, 208,245
DATAL1692,9,.133.87.133.88.165
DATAS32,24.101 .91.133.87.1€3
DATASS,.101.92,.133,88, 165,87
DATAZ4,121.29,133,.87.165.88
DATAR191.90.24,105.32.133.88
DATAZ4,1€0.0.173.16.3,240
DATAL1S . 163.255.69.94,133,54
DATAL?7.87.37.94,145,.687 .36
DATA7419
DATAL7E.6.177.87,5.94,143
DATAS? . 173.108.3.133.89.,169
DATAG.1332.920.133,91,133,92
DATA24.14.169,3.14.193.3

37

28540
20559
20558
28579
20520
28599
20595
20660
20619
20628
20630
20642
20658
28660
20eva
20520
20693
20699
Zureq
28710
287260
20720
2749
28758
2750
28779
2aven
20798
28735
2230
20219
20920
a5 1=)
20240
2250
208E9
20878
20220
Zassg
2895
2980
20911
20920
293330
26940
23354
20960
208372
20920
20990
28935

38

DATH14.1602,3,.173.189.3,133
DaRTAS1.24.14.169.3.45,118
DRTAZ.24.14.1689,.3.46.1182
DATAZ.173.199.3.24,101 .91
DATALS3.91.172.110,.3.1681 .92
DRTA122.92.24.169.0,133.87
DARTAS49S
DATA122.88.165.89,.24.101.51
DATAL22.687.165.92.161,83.24
DATA19S.4.133.88,173.111.3
DATALG.1G.10,10.141.112.3
ORTR16R.8,.177.87.41.15.13
DHTH}12.3.145.8?.169.1.141
DATALT?.3.169.0,133,.95.104
DATAL?E. 104,168,104 ,96.169.0
DATAZ.201 .32.288.1,232.189
DATARG.2.240,.72.138.72.1%52
DATAG338
DARTAT2,173.64,3,.56.237 .60
DATA3.141.68.2.173.65.2
DATAZZ7.61.3.141.69.3.1783
DATASE .3 .56,237,62.3.141
DATA7A.2.173.63,3,237 .67
DATAR.141.71.2.169,1.141
DAETRS4,2.141.96.3,163.8
OATAL141.95,3.141,.97.3.173
DATATL . 2.41,.128,.240.9,169
DATAZSS,141.94,.3,141.95.3
DATREATZ
OATA173,.69.3.41.,128.240.8
DATA169.255,141.96,3,141 .97
DATA3.173.69.3,.41.122.240
OATAZA . 173,68, 3,732,255, 141
DATAT2.2.24.173.68.3.73
DRTAZSS . 105, 1,141 ,72.3,173
DATA?2.2.105,.9,141.72.3
DRTATE.112.114,173.68.3. 141
DATAT2.3.1723.63.3.141.73
DATAZ.173.71,2.41.128,240
DATAE4 10
DATAZ®.173,.71.3,723.255.141
PATA7TS .3.24.173.70.3.73
DATAZ2SS.10%.1,141.74.3.172
DATA?TS,2.105,8.141,75.3
ORTATE.161.114,173,70.3.141
DATATY.3.173.71.3.141.75
DETAZ.173.72.3.56.237.74
DATR3,141.83,3.173.73.3
ORTAZEY . 75.2.141.89.3.41
DATA128.240 .60, 169,255,141 .99
DATAE3?3

21808
21816
21829
21028
21944
21856
2186A
21878
21682
21620
21895
21180
2111@
21128
21128
211468
21159
21168
21178
21188
211909
21195
21206
21219
21228
21228
21240
21259
21268
21279
21288
21290
21295
21268
21318
21228
21326
21240
21358
21266
21378
213288
21399
21395
21296
21410
21420
21426
214485
21456
21458

DATAZ.141.91.%,163.8, 141
DATAS2.3.141.92.3.173.74
DRTAR2.141.76.3,173,75,3
DATAL141 .77 .2.173.72.%.141
DATA78.2.173.72.3.141.79
DATAZR,173.71.2.41.128.208
OATATSO.162.1.141.90,3.169
DATAD,141.21.3.76,45.115
DATALE69.8.141.90,3.141.91
DATAZ, 169,255.141.92,3.141
DATASS41
DATAS3.2.172.72.2.141.7€
DRTAR.173.73.3.141.77.3
DATAL?S.74.2.141,78.2,173
DATATS.2.141.79.3,172.63
DATAR2.41.126,.268,10,169.1
DATA141.92.3.169.0.141.93
DATAR,.1732.76.2.141,82.2
DATAL73.77.3.141.83.3,173
DATATS . 3,141 .80,3,173.79
DATAR.141,81.3,173.76,3
CATASSSZ
DATASE.237.78.3.141 .84 .3
DATAL?S.77.2.237.79.2.141
DATASS.3.78.77.2.110.76
DATAZ.173.78.2.56.2587.76
CRTR2.141.86.3.173.79.3
DATAZ3?.77.3,141,87,3.172
DATALR,3.141.16,3,173.€0
DATAR, 133 ,.89,172,.61.3,133
DATARSA,173.62.3.133,91.32

DATAL1168.112.173.87.3.41.128

DATASS22
DATAZ40.60.1732,86.3,24, 162
DRTAS0,2.141.86,2.173.87
DATAZ,169,.81.3,141.87.3
DATAL73.£0,3.24.109,92.2
DATAL41 .60.2.173.61.2.103
DATR22,.2,141.61.3.173.62
DATAR.24.169,90.32,141.62
ORATA3.173.63.23.102.921.3
DATAL141 .63.2.76.5,116.173
DATASE.2.56,237.84.3. 141
DATASZRS
DATARS,3.173.87.,3.237.25
DATAZ,141.87.3.173,6Q.3
DATA24 .183,96.3.,141,69.3
DATAL172,.61.2,.1@9,.97.3.141
DATAE1.3.173.62.3.24.183
DATAS4,.2.141,62.3,173,€3
DATAZ2.1089.95.3.141.,63.3

39

21479
21428
21490
214985
21589
21510
21528
215320
21340
21559
215€8
21578
215209
21532
21593
21609
21610
21629
21630
21649
21650
21668
21679
21620
21690
21695
217eo0
21719
21720
21720
21749
21739
21766
21779
217680
21730
21795
21302
21818
21220
218322
21240
21858
21260
21870
READY.

40

DATA17Z.82.3.56.233.1.141
DATAS2.3.173.83.3.233.8
DATA141.83,3.173.17.3.240
DATAS434
DATA4.165.95,208,16.173,82
DATAR,240.3.76.119.115.173
DATAS2.3.249,3.76.119.115
DATA104.168.104,170,104.96.72
DATR1S2.72.138.72.173.102.3
PDATA240,5.169.255.141,103.3
DATALT3.102.23.201.31.176.3
DATAT6.18.117.201.64,144 .14
DATAZ4 .201 .96:144,.3,76.18
DATR117.56.233.64.141.102.3
DATA71S9
DRTH169.2@8.133,252.169,8.133
DHTHZSl.1?3.132.3'169.3.24
DRT919,141;192,3.165.252.195
DHTHB.133.252.1?3.182.3.136
DHTR288.239.133.251-169,8.141
DHTHIBG.3-1?3,14.22B.41.254
DATA141.14.220.165.1.41.251
DATA12%.1.160.@.177.251.141
DATA102.3.165.1.9.4.133
OATAL,173.14.2208.9.1.141
DATAT28Y
DHTH14.22B.173.183.3.240.6
DRTH??.182.3.141.102.3.1?3
OATAR99,2.141.1085.3,.173.8&
DHTH3.141,194.3.169.128.141
DRTHlB?.S.1?3.1@2.3.45.1@?
DHTH3.249.18.1?3.184.3.133
DHTHSS.173r1@5.3.133.99.1?3
DHTH!@B.3,133.91.32.119.112
UHTR?S,lﬁ?.3.24@.2@.1?3.194
DATAZ.24.165,1.141.184.3
DATASZES
DHTHI?3,165.3.195.9.141.1@5
DHTHS.?G.!SG.i!G.lGE.ZSl.24
DRTH1@5.1.133.251.165.252.135
DHTHB.133.252.24.238.l@@.a
DATALTE.S . 206, 106,3,240.3
DHTH?E.IGS.liG.194.1?8.104.168
DATA1D4 .96

DATASE38 . ~1

HIGH RESOLUTION DEMO

The hi-res loader on pp. 35-40 should be loaded and run once
before using this demo.

DESCRIPTION

This demonstration program plots a series of graphs using the line
plot and point plot routines. The first graph is of SIN(X), drawn with
the axis drawn from co-ordinates 0,100 across the screen. When
the graph plot has been completed, the graph is then plotted four
times the resolution using the point plot routine.

The next two are 3D graphs, each take about 7 minutes to plot.
The reason for the long time in plotting is the extremely
complicated calculation needed to transform the three dimension-
al figure into a two dimensional display on the screen. With all of
these graphs, the character plot routine is used to label the graphs.

The variables used are of a standard convention: —X and Y are x
andy co-ordinates, X1, Y1 and X2, Y2 are co-ordinates for each end
of a line to be plotted, PC is the point colour (0-15), SC is the
screen colour (0-15), AD is add or delete (O=add, 1=delete), RN is a
reverse or normal flag for use in character plotting (0=normal,
1=reverse), and XX and YY are the x and y steps between
characters in the character plot routine.

RUNNING THE PROGRAM

Before this demo is loaded and run, make sure that the hi-res loader
has been loaded and run. The loader need only be run once and it
will be there until the machine is switched off.

Now the loader is resident’, the demonstration program may be
loaded and run. There are no input parameters. When all three
graphs have been plotted, the program will repeat itself. To stop the
program hit RUN-STOP/RESTORE.

PROGRAM STRUCTURE

A brief run down of the program lines is as follows:

Lines 10-170 : Rem'’s to explain what each of the subroutines
does

180-200 : Display the text 'Y=SIN(X)" in the bottom corner
of the screen.

210-250 : Loop to plot lines from co-ordinates 0,100 to
points on a sine curve.

260-290 : Loop to plot points on the same curve but of a
smaller step in x.

300 : Pause between graphs.

310 : Function for the first 3D graph.

41

315
340-350
360-370
480

490

500

510
10000-10030
11000-11020
12000-12030
13000-13070
14000-14130
15000-15150

42

: Loop for both graphs.

: Display the text in the bottom left corner.

. Loop to plot 3D graph on the screen.

: Pause between graphs.

. A new equation for a different 3D graph.

: Go back and plot new graph.

: Repeat program.

: Subroutine to call the set up routine.

. Subroutine to call the clear hi-res screen routine
- Subroutine to call the global colour change

- Subroutine to call the point plot routine

- Subroutine to call the line plot routine

- Subroutine to loop and call the character plot routine.

16 REM skkpeidskieblekieiinpirbiookiokng

20 REM % THIS PROGRAM DEMONSTRATES THE LUISE OF
20 REM % THE HI-RES GRAFHICS ROUTINES.

48 REM %.FOR ERSE OF USE., THE POKE AHD SVYS

S8 REM
68 FEM %

78 REM % GOSUE 1600a (SET UP HIRES SCREEND
0 REM *

296 REM

198
118
120
1209
142
15
160
176
174
175
176
177
1209
190
200
21e
228
220
240
258
254
257
256
268
270
280
290
308
319
11

2
213
214
315
ze20
338
240
35a
260
a9
386
350

ROUTIHMES ARE IM SUEROUTINES AT THE END
OF THE PROGRAM THUS. -

*

GO3UB 110008 (CLERR THE BRIT MAP
SCREEM)

REM¥ GOSUB 12000 <D0 A GLOBAL COLOUR

REM# CHAMGE >

REM¥ GOSUB 13000 CPLOT A POINT)

FEM¥ GOSUR 14000 ¢ORAN A LINE?

REM¥ GOSUB 15008 CDISPLAY R STRING OM THEX

REM* SCREEM) »*

REM# *

RE Mot b b NOR N ORI N NEOR IR AR b

REM

REM PLOT LIMNES FROM ORIGIN TO

REM FPOIMT OM SINE GRAPH

REM

PC=1:8C=2:GOZLB 10200

Bf="w=CIN(X)" tRH=1 :AD=@ :FC=3

H=@ MK =8 1 Y=192 :¥YY=0 :30SUB 15000

PC={ 1X1=0:Y1=10Q:A0=0

FOR X2=1 TO 320 STEP 2

Y2=1008— SRS TH(X2%¥1/745.5)>

GOSUB 14068

HEXT X2

REM

REM PLOT THE SIME CURVE

REM

FOR X=@ TO 319 STEF .5

Y= 10R-(FO¥S TH(X¥n /45, 5>

GosUR 13669

HERT X

FOR I=1 TO 108€:HEXT I

DEF FHACY)Y=32#(SINC(YA24)+, 48¥STHC Y /2400 +20

REM

REM FLOT A 30 GRAFH USING THE FUNCTIONW

REM DEFIMED IM LIME 310

REM

FOR J=1TO2

PC=€:SC=12:1G0SUR 12G00

GOSUR 11008

B$="30 GRAFH" tRN=1 tAD=0:PC=0

H=0 1 MK=81Y=152:¥¥Y=0:60SUB 15200

PC=6

FOR ¥X=-1909 TO @ STEP 1

K=6:L=0:P=1:21=0:M=1

Y1 =K¥INT (SRR 12908 -XX¥XXD /KD

*
LE R E R E R ERE X R X 1

4538 FOR Z=¥1 TO -¥1 STEP -K

41 Y=IHT(SB+FHH(SQR<XH*XH+2¥Z))—.76?186*2)
420 IF Y<L THEM 478

429 L=Y:Y=190-Y

443 HK=MEHK+160

459 GOSUB 13880

460 M=-M:1F M=-1THEH44@

478 MHEXT Z.¥%X

483 FOR I=1 TO 1808:NEXT I

484 REM

485 REM A DIFFERENT 30 GRAFH

486 REM

498 DEF FHRCY)I=00SENP{-YHY /5680
509 HEXT J

510 RUN:REM REFEAT

10000 REM SET UF HIRES SCREEN
19910 POKE 99.SC+PC¥16

19220 SYSC28672)

10236 RETURH

11800 REM CLEAR GRAPHICS SCREEN
11818 SYS(2e704)

11028 RETURH

12000 REM GLOEAL COLOUR CHRNGE
120108 POKE 283 .6C+PCHLE

12020 SYS(Z8743)

12038 RETURHM

12060 REM FLOT A FOINMY AT b 4
12010 POKE 89.X~-INT(X/256)%256
12620 POKE 9@, INT(X/23€2

1793@ POKE 21.IHTCY

12040 POKE 784.A0

12058 POKE B879.PC

13060 SYSCEZEYS2D

13870 RETURH

14060 REM DRAM A LIME BETHMEEN X1.VY1
14810 REM AMD X2.Y2

14026 FPOME 228, K1~ INT(X1/25€) %256
14920 POKE 823 . IMT(X1/256)

14040 POKE QIR . Y1-INT(Y1 /286> %256
14050 POKE 831.IMT(Y1/258)

14968 POKE 832 . K2~ IHT(H2/2TE I ¥256
14070 POKE £33.INT(X2/256>

14068 POKE 834 Y2~ INT(Y2/256) %256
14990 POKE 835.IHT(Y2,256)

1418@ POKE 786.AD

14110 POKE 279.PC

14126 SYSC29158)

14139 RETURH

15608 REM PLOT CHRARACTER A% OH TO THE
15818 REM SCREEM WITH TOP LEFT CO0RD-

15620
158320
1504@
15950
15860
15078
15088
15890
151606
15110
15126
15130
15148
1515
RERADY.

REM IHATES X.Y

FORI=

1TOLEMCB$>

AE=MID$F<BF.1,1D

POKE
POKE
POKE
POKE
POKE
POKE
PIKE

866, X~ INT (X 256 2%256
BE7 , INT(K/206)

268 ,Y:FOKEESS .0
878 . ASCCRED

ar1.RH

784 .R0

279.PC

SYS(29743)
K=X+HK 1y=Y+iY

HEXT

RETIURN

45

3D DRAWING 1

The hi-res loader on pp. 35-40 should be loaded and run once
before using this demo.

DESCRIPTION

3 Dimensional shapes may be displayed in two dimensions by
having the optical effect of being 3 dimensional. This is achieved by
using a transformation matrix. This simply requires the addition of
an extra axis — the Z axis — to the X and Y axis used in a two
dimensional transformation matrix (see program MOVE). The
transformation matrix consists of sixteen equations, they are
stored in lines 3010 to 3160. The mathematics are rather awkward
to explain, however, for those interested, the book ‘Principles of
Interactive Graphics' by Newman and Sproul can be recom-
mended.

RUNNING THE PROGRAM

There are no input parameter values since they are all within the
program as LET statements. There are nine parameter values
which control the movement, rotation of scaling of the shape, these
are set in lines 120-200. Lines 120 and 140 contain the X, Y, and Z
scaling factors—full size = 1, half size = 0.5 etc. The rotational
angles of the shape in either one of the three axes are stored in lines
180-200: note that since these angles must be in radians they are
multiplied by Pi. The movement of the shape in the X, Y, and Z axes
is stored in lines 150-170, and is the number of pixels in either
direction from the original co-ordinates stored in the shape table.

The object shape is stored in a shape table consisting of two
parts, the first is simply of the X, Y, and Z co-ordinates, of each
corner co-ordinate comprising the shape. The second partis a table
of connections of pairs of points between which a line should be
drawn. The number of edges in the shape is stored as the variable
‘NE’ and the number of co-ordinate points between which the
edges are connected is stored as variable ‘NP’. The co-ordinate
table is stored as data statements in lines 1210-1220, and the
connection table in lines 1310-1330.

PROGRAM STRUCTURE

A brief run down of the program lines is as follows:
Line70 . Draw border around screen using subroutine at
900.

46

100-110
120-140
150-170

180-200
410-530
900-960
1000-1170

1200-1220

2000-2240
3000-3160
3200-3350
4000-4080

5000-5090
10000-10030
11000-11090

: Setup transform matrix arrays.
: X, Y,and Z scaling factors.
: X, Y, and Z axis movement of shape from initial

position.

: Angle of X, Y, and Z axis rotation in radians.

: Main program execution routine.

: Borderdrawing subroutine.

: Load shape data into arrays — array S contains the

co-ordinate table of the original shape — array E
contains the line connection data — array M
contains the transformed co-ordinate data.

: Data statements containing co-ordinate shape

data as X, Y, and Z for each corner point; note that
the first three values comprise the co-ordinates for
point 1, the second three for point 2 etc.

: Draw the shape.

. Perform transformation matrix calculations.

: Setup scaling and transformation matrix.

: Perform the transformation on each co-ordinate

pointwithin the shape table.

. Find centre of shape.
: Subroutine to call the set up routine.
: Subroutine to call the line plot routine.

47

1 REM 30 DRAWING 1

2 REM RsckEmRiRE RO

2 REM

18 FEM A THREE DIMENSIOMAL SHAPE 1S5 DRANH BY THIS PROGRAM
56 PEM THE ROTRTION POSITION AND SCALE OF THE OBJECT
%@ REM CAN BE CHRNGED TO GIVE DIFFERENT YIEWING AMGLES.
35 REM .

40 REM SET COLOURS

5p PC=6:5C=12

€0 GOSUE 10600

€5 REM

>@ REM DRAK BORDER RROUND SCREEH
75 REM

g0 GOSUB 900

85 REM

ap REM SET UP CONSTANTS, VARIRBLES. AND ARRAYS
95 REM

100 DIM AC4.4>

110 DIM B¢4.4)

120 SX=.3

120 SY=.3

140 €2=.3

150 TX=1

166 Ty=1

178 TZ=1

190 RX=40%n/150

190 RY=20%n/180

200 RZ=S@¥n/180

40@ REM MAIN PROGRAM LOOP

410 GOSUE 1000

420 GOSUE S900

470 GOSUE 3009

440 GNSUE 4090

450 GOSUB 2600

=@ GET FA$:IF A$="" THEH S0

S1p FOKES3220, 14 1FOKES3281 € tPRINT X" s
5oB POKES326S .27 IFOKES3272.21

5230 EHD

2p@ REM BORDER DRAWING SUBROUTINE
295 REM

91@ ¥i=A1Y1=0

ep@ ¥2=3191v2=0:AD=0:00SUE 11200
az@ K1=K2iv1=v2iv2=199:00SUB 11009
04@ K1=¥Zi¥1=Y21%2=0100SUB 11009
omG M1=XZ1¥1=v2:¥Y2=0:00SUB 11000
969 RETURN

295 REM

1060 REM INITIALISE SHAPE

1@0% REM

1919 NP=8

1020 ME=12

1328 FEM

1@4a OIM SC3 HFD

1959 0OIM ECHE.2)

106 DIM MC2 L HPD

11683 REM

1119 FOR H=1 TO HP

1128 READ S¢1.M)>.SC2.M),.8(2.M)

1138 HEXT N

1148 FOR K=1 TO HE

1158 READ ECK.1)>.ECK.2)

1170 HEXT K

1195 REM

1268 REM X.¥Y.Z POINT COORDIMATES

1219 DATAR 58.0.200.256.8.200,250.0.0.50.6.0
1220 DATA 50.200,.260,250.2600.200,250,200.0.%0,200.0

1295 FEM
1206 REM COMHECTIOH DATA
1395 REM
1210 DRTA 1.2.2.2.2.4.4.1
1220 DATR 5.1.2.6.4.8,7.3
13322 DATR £,5.5.8.8,7.7.6

1900 RETLIRM

19835 REM

2900 REM DRAK SHAFE

2085 REM

2929 FOR K=1 TO ME

2038 VI=ECWK. 1>

2040 VY2=E(K.2D

2845 IF V1=0 THEH 2240

2850 Xi=M{(1.¥1)

2060 Y1=M(2.Y1)

2070 H¥2=M{1.VY2>

208a Y2=EM(2. .V

2220 AD=R:PC=23G03UB 11000

2248 HEXMT K

22968 RETUIRN

2995 REM

2e68 REM SET TRAHSFORMATION MATRIX
23805 REM

@10 AL 1=COSCRYIRCOS(RZID

2H2F AL, 2)=COS(RY MHSTHN(RZ)

Z0EB ACL,3)=~SIN(RY)

2940 AL .4)=0

3050 ACD.1)=COSCRXI¥(-SINCRZ) Y+SIHCRXIRSTHIRY YRCOS(RZ)D
AREH AC2,2)=COSCRYI¥COS(RZI+SINCRYI ¥SIMCRYIRSINCRZ)
27O ACR,Z)=SINCRX*¥COS(RY)

29380 AC2.4>=0
209@ ACR,1)=(-SIN(RYI IK(~SIHCRZ) »+COSCRY I HSINCRYI¥COSCRZY

32100 AC3.2)=-SIMCRXIMCOSCRZI+COS(RZI*SIM(RY D ¥STNCRZ)
3118 AC3.,2)=COSC(RYI¥COS(RY)

2120
3126
2140
3156
2160
3195
2208

3593

3229
z22e
3240
2256
2260
2279
3229
3290
2300
33210
23320
3330
2249
2259
3900
2995
4094
4905
4310
40815
4028
407360
40409
41345
4050
4959
40970
4020
4960
4935
5000
S0a5
010
SR29
sAza
sS4
SB548
S059
5a7a
S036
%096

50

AC3.4>=0
A4, 1>=0
AC4 ,2>=0
AC4.3>=0
Ac4 . 4)=1
REM

REM SET UP SCALING AND TRAMSLATION MATRIX

EE?,1)=SX*R(1.1)
BC1 . 2>)=5X¥AC1 . 2)
EC1.3>=SX¥A01,3>
REM
B(2.1>=CY¥AC2. 1D
BC2 . 2>)=3Y¥A(2.2)
BC2.3)=SY¥AC2,3>
REM
B(2.1)=82¥AC3.1)
B(3,2)=52%AC(3,2)
B(3.3)=82%¥AC3.3)
REM

BC(4.1>=TX
B(4.2>=TY
B(4,.20=T2
RETLUIRN

REM

FEM PERFORM TRANSLATION
REM

FOR @=1 TO MNP
REM

HT=3¢1.0>-XC
wT=5¢2.a>-YC
2T=5¢3,.A>~-2C
REM

M(l»Q)*XC+(KT#BCI.1)+VT*E(2.1)*2T*BC3.1)+B(4.1))
N(2.9)=?C+(XT*B(1.2)+VT*B<2.2)+ZT*B<3.2)+8(4.2))

MCR L EI=ZC+(XTHECL DI +YTHBCZ

HEXT @

RETURM

REM

REM FIND CEWTROID
REM

P=0 Q=0 3:R=0
FOR I=1 TO NP
P=P+SC1.1>
R=R+5¢2. 1)
R=R+5¢(3.1)
MEXT I

RCo=FP/ HP
YC=0,/HP
ZC=R/HP

LADHZTHBCE, 30+B4,30D

S30@ RETURN

1066008
1a91e
igaze
10020
11080
11010
1iaz28
11836
11048
11852
11e&6
1187e
116820
11098
REROY.

REM SET UP HIRES SCREEN
POKEZS . SC+PC¥1E

SYS(2Ee72) 1FOKESZ288 . SC
RETURN

REM DRAW A LINE BETWEEN X1.Y1 AND X2.v¥2
POKES2E . X1-INT(¥1/2565%256
POKEE29 . INT(X1/256)
FOKES?2Q.Y1 :POKES31.0
POKESR2 . K2-INT (X2/256 > ¥256
POKES23. INT(H2,°256>
POKEEZ4 . Y2 :POKES3S5.0
FPOKE?8E .AD:POKEEYS . PC
SYS(29158>

RETURN

51

3D DRAWING 2

The hi-res loader on pp. 35-40 should be loaded and run once
before using this demo.

DESCRIPTION

This program is identical to the program 3D DRAWING 1 except
that an additional subroutine has been added to remove hidden
lines. Hidden lines are those lines which lie out of sight of the
viewer and are hidden behind the front surfaces. By removing
these hidden lines the shape of the object becomes much clearer.
The subroutine which checks for hidden lines is located between
line numbers 6000 and 6150.

RUNNING THE PROGRAM

The parameters and data tables required for this program are the
same as those used for the program 3D DRAWING 1, consult this
program for information. Note that the connection table now
describes object faces rather than lines.

PROGRAM STRUCTURE

A brief run down of the program lines is as follows:

:Tines 1-5995 are identical to 3D DRAWING 1 except the following
ines:

115-117 : The addition of two more arrays.

450 : Isnow GOSUB 6000.

. 1010-1170 : Slight alterations required.

1310-1360 : Differentdata.

6000-6140 : Subroutineto check for hidden surfaces.

52

1R
2R
3R
10

20

20

3s

26

40

50

60

&S

70

75

20

85

=)

a5

100
119
115
117
120
130
140
150
160
17e
120
190
200
400
41a
4za
420
449
45Q
560
S16
526
530
200
205
210
920
920
248
950
250
2995

EM 230 DRAWING 2
EM kb aokb i Nop kR bk Rk
EM

REM A THREE DIMENSICHAL SHAPE IS ORAWN BY THIS PROGRAM

REM THE ROTATIOM POSITIOH AND SCALE OF THE OBJECT
CAN BE CHAMGED TO GIVE DIFFERENT VIEWING ANGLES.

REM
REM HIDDEM LIMES ARE NOT DRAKM
REM

REM SET COLOURS

PC=63:8C=12

GOSLB 19900

REM

REM DFAN BORDER AROUMD SCREEN
REM

cosue sea

REM

REM SET UP COMSTANTS. VARIABLES. RND ARRAYS

REM

DIM FHC(4.4>

DIM B(4.4)

DIM CC2

DIM DC3

EX=, 3

BYy=.3

€Z=,3

TX=1

TY=1

TZ=1

RX=40%n./190

RY=20%n/120

RZ=50%n./1806

REM MAIH PROGRAM LOOP

GOSUR 1600

GOsSUE Sa0e

GOSLUR 2680

GOSUR 4058

GOSUB €000

GET Afi1IF A$="" THEM 52@
FOKES3250, 14 :POKES22€1 .6 1FRINT" X" +
POKES326% .27 1FOKES2272 .21
EHND

REM BORDER DRAWING SUBROUTIHNE
REM

Xi=0:Y1=0
®2=2191v2=0:AD=0:60SUB 11060
K1=¢2:1¥1=Y2:1¥Y2=199:60SUB 11000
®1=X2:1Y1=Y2:%2=0:GOSUB 11088
K1=X21¥1=¥Y2:1Y2=6:60SUB 11000
RETURN

REM

53

1098 REM INITIALISE SHAPE

1985 REM

1918 HP=8

1020 HE=4

1830 NF=6

1040 DIM SC3.HPD

1958 OIM ECHF . HE.2)

1860 DIM M3, HPD

1180 REM

1118 FOR H=1 TO HP

1122 READ SC1.M>.SC2.H> . SCE. .M
1126 MEXT H

1135 FOR F=1 TQ HF

11460 FOR K=1 TO HE

1150 READ ECF.K.1).ECF.K.23

117@ MEXT K.F

1195 REM

1260 REM X.Y.Z POINT COORDIHATES
1218 DATA 5.9 .200,250.9.200,.250.0.0,%0.7.0
122@ DATA 59.2@9.2@8.250-2@6.269.258.2@9.0.58.2@@.@
1235 REM

1260 REM COHNECTIOM DATA

1285 REM

12180 DATA 1.2,2.2.2.4.4.1
1228 DRTA 5.1.1.4.4.3,2.5
1220 0ATA 6.5.5.8.8,7.7.6
. - 2

1342 PATH 2.8.8:2:8:3:3:%
13660 DATA 3.7.7.8.82.4.4.3

19660 RETURH

1235 REM

2000 REM ORAW SHAFE

205 REM

2026 FOR K=1 TO HE

20328 VI=ECF.K.1>

2040 V2=ECF . K. 22

2045 IF V1=0 THEM 2240

2053 ¥1=M(1,.¥Y1)

2069 Y1=M{2,V 1)

2070 Xa=M(1 VY2

2020 Y2=M{2.V2)

2220 AD=G:PC=2:00SUE 11006
2248 HEXT K

2906 RETURH

2935 REM

2006 REM SET TRAMSFORMATION MATRIX
3205 REM

3019 ACL. 1>=COSCRYI¥COS(R2Z)
3028 AC1.2>=COS(RYIHSINIRZ)
2030 AL .32=-SINCRY)

2948 AL .4>=0

SU56
3868
Zava
30328
3R9A
2140
2118
3120
31z6
2140
31568
2160
2195
jed=inls]
3205
221a
3220
2230
3240
2259
3260
zava
3299
2299
33680
peep 9
3320
3320
3249
3250
3999
2995
ETaial)
490%
4019
4015
4020
409za
4040
4045
4056
4960
4a7a
4950
4900
4325
a7 %10
|03
pad 5B R
5920
5038

A2, 1>=COSRDI#(-STHCRZ) D+SIH(RKD HSIH(RY I ¥COSCRE)
R(2.2>=COS(RMI¥COSIRZI+SINCRXDI XS IMNCRY Y¥SINC(RZY
AC2.3>=5INHIRX>¥COSC(RY)>

A(2.4>=0
R(2.13=C(-SINRXI D¥(~-SINCRZ) Y+COS(RKI¥SINCRY I¥CUS(RZ)
AC3.2>=-SIHIRXIKCOS(RZX+COS(RZIKSIM(RY IHSIM(RZ>
ACZ.3>=COS(RX>*COSC(RY)D

A(3.4>=8

AC4.1>=0

R(4.,2>=0

AC4,2>=0

A4 .40=1

REM

REM SET UF SCALING AND TRAMSLATION MATRIX

REM

BC1.10=0X#AC1, 1)

B(1.,2)=SX¥R(1.2)

B(1.3>=SX¥R(1,3>

REM

B(2.1>=8Y¥AC2. 1>

B(2.2>=2Y¥R(2.2)

BC(2,.3>=SvY¥AC2.2

REM

B(3.1>=5Z%R(Z.12

B(3.2)=52%AC3.2)

B(3,.3)=SZ2%AC3.3?

REM

B(4,1>=TX

BC4.,2)=TY

B(4.3>=T2Z

RETLIRN

REM

REM PERFORM TRANSLATIOM

REM

FOR Q=1 TO HP

REM

RT=5¢1.0>-HC

YT=8(2.0>-YC

ZT=8¢2R.-2C

REM

MCL QY =XC+(XTHBCL . 1D+YTHB(2, 1)+2THR(3.1)+B(4.1)>
M2, 00=YCH+(KTHRCL . 20+YTHBC(2 . 2)+ZTHR(3 . 2)+R(4, 22
MCE,QI=ZCHCXTHBCL , 3X+YTHEC2, 3D +ZTHE (B, 3D +B(4.3))
HEXT @

RETLIRN

REM

REM FIMD CEMTROID

REM

P=6:Q=0:R=Q

FOR I=1 TO NP

P=F+SC1i. 1>

55

5048 @=Q+3(2.1>

SAS8 R=R+S(3.1>

SaEQ HEXT I

s5a70 XC=F/NF

5086 YCO=Q-/HP

5898 ZC=R/HP

5920 RETURN

5995 REM

€000 REM HIDDEN SURFACE CHECK
5005 REM

£018 FOR F=1 TO HF

€20 FOR J=1 TO 3

€G30 CCId=MCI . ECF.1.2)0-M(J.ECF,1,13)
6640 DCI¥=M(J.ECF.2.133-M(J . ECF.2.2))
6A50 HEXT J

€068 F1=C(2>%D(32-CC3H0C2)

6a79 P2=CC3)%DC1>-C(1>%0C3)

6026 P2=C(1)¥0(2)-C(2X%0DC1D

6090 QA1=1-MC1,ECF.1.2>)

€160 Q2=1-M<(2 . ECF.1.23)

6118 B2=S5P2-M(3.ECF.1.2))

6120 W=P1¥Q1+FP2¥02+P3#03

6130 IF W>=0 THEN GOSUE 2000
5140 HEXT F

6150 RETLIRM

10068 REM SET LIP HIRES SCREEM
10918 POKESS.SC+PC¥1E

10026 SYS(28672) 1POKES2288,8C
19938 RETURM

11600 FEM DRAM A LIME BETHEEN X1.¥1 AND X2.Y2
11010 FOKES22.%1-INT(X1/256) %256
11925 FOKES29, INT(X1/2T56)

11920 FOKE220.Y1:FOKES31.9

11040 FPOKESZ2.X2-IHT(X2/256) %256
11950 POKES23, INT(X2/256)

11060 POKES34 Y2 IPOKESRS . 2

110780 POKE?R6.ADFPOKES?TI.PC
11080 SYSC29158)

11932 RETURN

READY.

56

MOVE

The hi-res loader on pp. 35-40 should be loaded and run once
before using this demo.

DESCRIPTION

A transformation matrix can be used to cover all manipulation of a
shape for rotation, translation, and scaling. The primary purpose of
this program is to show how a shape can be moved about the
screen, but it also embodies the capability of scaling and rotation.
The transformation matrix consists of six quotations. These
equations are stored in lines 3000 —3100. Equations 1 to 4 consist of
the rotation transform equation multiplied by a scaling factor,
equations 5 and 6 do the movement by adding an offset to the
shape position. The shape can be translated to any part of the
screen, rotated through 360 degrees and stretched in either X or Y

axis or both. Note that the actual moving is done in the program,
what appears on the screen is the end result, and due to the large
amount of calculation required, is necessarily rather slow.

RUNNING THE PROGRAM

There are no input parameter values since they are all within the
program as ‘LET’ statements. There are six parameter values which
control the movement, rotation, or scaling of the shape, these are
set in lines 120 to 160. Lines 120 and 130 contain the X and Y scaling
factors — full size = 1, half size = 0.5 etc. The rotational angle of the
shape is stored as the variable RZ in line 140, note that since this
angle must be in radians it is multiplied by Pi/180. The movement of
the shape in the X and Y axes is stored in lines 150 and 160, and is
the number of pixels in either direction from the original
co-ordinates stored in the shape table

The object is stored in a shape table. This table consists simply of
the X and Y co-ordinates at the end of each line comprising the
shape. it should be noted that the number of co-ordinate pairs is
one more than the number of lines in the shape. The number of
lines in the shape is stored as the variable NP as the first value in
the data table. The data table is stored as data statements in lines
1110 to 1130. Try designing your own shapes on graph paper and
then entering the new values into the data statements.

PROGRAM STRUCTURE

A brief run down of the program lines is as follows:
line 90 : Draw border around screen using subroutines at

57

10
120-130
140
150-160

210-260
400-460
1000-1050
1110-1130
2000-2080
3000-3100
400-4070
5000-56220

10000-10020
11000-11090

58

400. »

: Setup transform matrix array.

: XandY scaling factors.

: Angle of shape rotation inradians.

: X and Y axis movement of shape from initial

positions.

: Main program execution.
: Border drawing subroutine.
: Load shape data into arrays — arrays X and Y

contain the original shape data — arrays U and V
contain the transformed shape data.

: Data statements containing shape data — line 1110

contains the number of lines in the shape.

: Findthe centre of the shape.
- Perform transformation matrix calculations.
. Performs the transformation on each co-ordinate

point within the shape table.

: Draws the shape using the transformed data in the

arraysUand V.

: Subroutineto call the set up routine.
: Subroutine to call the line plot routine.

1 REM MOVE
2 REM sdscksoknseesoporiiolionkkn
2 REM

19
28
o)
40
g0
69
ra
Ie=]
&0
R
95

1ga
1aS
1106

REM THIS PEOGRAM USES MATRIX TRANSFORMATION TO
REM MOVE.ROTRTE. OR SCALE A TWO DIMENSIONAL SHRAPE
REM
REM
REM SET COLOURS
SC=12:PC=6
GOSUB 16208
REM
REM DRAW BORDER
Gosue 400
REM
REM SET UP CONSTANTS. VARIABLES. AHD ARRAYS
REM
DIM ACZ.3D

129 Sx=1

130
140
150
18
190
208
2a5
218
220
238
24
258
260
27a
288
299
395
400
485
410
420
4308
440
459
460
295

Sv=1

RZ=00%n/180

TX=-50

T=2

REM

REM MAINM PROGRAM LOOP

REM

GOsSUB 1009

GOSUE 2000

GOSUE 3902

GOSUR 46880

GOsUE 5000

GET Af:IF AfF="" THEH 2€@
FOKES32580 , 14 1POKESZ2E1 .6 1PRINT XY ¢
FOKES3272,21 1 POKES3265 .27
EMD

REM

REM DORAK BOROER

REM

®1=0:¥1=0:AD=0
H2=2319:¥2=3:60SUB 1106
X1=X2:¥1=v2:Y2=199:005UB 11000
K1=X21¥1=Y2:1¥2=0160SUE 11000
K1=x2:¥1=Y2:¥Y2=0160SUB 11000
RETURM

REM

1000 REM IMITIALISE SHAPE

1905 REM

1019 RERD HP

1820 DIM XCHP+1) WCHP+1) (UCHP+1) VCNP+1D
1830 FOR I=1 TO NP+1

59

1648
1858
1e9e
1199
1105
11108
1120
1130
1200
1995
sl
2085
2010
2028
2020
2049
2a5a
2060
zeva
2820
2995
clciulo]
2083
3010
3920
el el
3040
jeiabal)
2060
zave
3020
&8990
319a
3925
4200
4083
4010
4028
40329
4040
4358
40649
4079
4995
5000
5005
S010
5629
5836
5196
S5218

60

READ XCIX.Y<CDD

MEXT I

REM

REM SHAFE DATR

REM

DATA 5

DATA 160.108,150.129.175.75
DATR 150,.38.168.59.100,199
RETURHM

REM

REM FIMD CEHWTRE OF SHAFE
REM

CX=0:CYy=0

FOR C=1 TOD WP

CR=CR+X(CD

C=CY+YD)

HEXT C

CH=CH/HP

Cy=CY¥ /NP

RETURM

REM

REM SET TRAMSFORMATION MATRIX
REM

ACL ., 1)=5H¥COSCRZD

AL, 2)=SXkSTN(RI)

REM

AC2.1)=CSY¥(~SIH(R2))

AC2 . 2)=SY%¥COSC(RZ)

REM

ACZ.10=TK

AC3 . 20=TY

REM

RETURH

REM

REM DO TRAMSFORMATIOH
REM

FOR =1 TO HP+1
KT=MQ)-CX

YT=Y Ry —-CY

DCEY=CH4+ CRTHACL 1D +YTHAC2, 1D+AC3 100
VD =CY+CXTHACE , 2+ THACZ, 2D+RC3.2))
HEXT @

FETURH

REM

#EM DRAN SHAPE

REM

FOR R=1 TO HP

K= Q) 1YL=V (R
H2=UCR+1) t¥2=V(R+1D
AD=0:FC=6:GOSUB 11000
HEXT @

5220 RETLRN

19008 POKESS.SC+PC¥16

1e018 SYS(2esver tFOKESE288 ., SC
12828 RETURN

11688 FOKE 828.X1-INT(X1/256>%256
11918 POKE £2%.INT(X1/256>

11020 POKE §3@.Y1:FPOKE &31.0
11@38 FOKE 832.,X2-INT(X2-256:%256
11646 POKE 833. INT(X2-7256)

11858 FOKE 834.Y2:POKE 2835.0@
1106@ POKE 78&.RD

11870 POKE 873.PC

11886 SYS(29158>

11996 RETURN

READY.

61

ELLIPSE

The hi-res loader on pp. 35-40 should be loaded and run once
before using this demo.

DESCRIPTION

This program allows the user to plot ellipses on the screen
(circles may also be plotted by setting the elliptical offsets in the X
and the Y axis to the same values). The ellipse is drawn with a
variable dot spacing, which is input along with the centre
co-ordinates, the radius, and the elliptical offsets. Since characters
cannot be displayed directly onto the screen in Hi-Res Mode, the
input routines will not display the data entry. This has been
overcome by using the character plot routine to display the input
characters using the ‘GET" command. This routine is used
throughout the inputs in the program, but is very limited, there is
no facility to delete a character (any character other than 0-9, " or
‘" will act as a return in a normal input).

RUNNING THE PROGRAM

When run, a border is drawn around the screen plotting area and a
‘2" will appear at the bottom outside the border. This is a prompt to
enter the X and Y centre co-ordinates of the ellipse. When the
co-ordinates have been entered, then the radius is asked for, then
the dot spacing, and finally the elliptical offsets in X and Y.

PROGRAM STRUCTURE

A brief run down of the program lines is as follows.
Lines60-70 : Set colours and go into hi-res mode.

90 . Draw border round screen using subroutine at 400.
110-119 : Input centre co-ordinates for the ellipse.

120-126 : Inputradius of ellipse.

130-136 . Input dot spacing for ellipse.

140-149 . Input elliptical offsets for ellipse.

210-290 : Drawellipse.

300 : Repeat for another go.

350-370 . if XC<O or YC(O then restore registers and end.
400-460 : Draw aborderaround display area.

10000-10030 : Subroutine to call the setup routine.
11000-11100 : Subroutineto call the line plot routine.
12000-12060 : Subroutine to call the point plot routine.
13000-13090 : Subroutineto call the character plot routine.

62

1 R
2 R
2R
1@

29

20

48

Sa

S8

€8

ra

75

a9

a5

92

a5

106
11@
111
112
113
114
115
116
117
118
119
126
121
122
1273
124
126
1209
121
132
133
1324
126
148
141
142
143
144
145
146
147
149
195
208

EM ELLIFSE
P sk e e ool ol MR Nk Sk 3 ok ok
EM

REM ROLITIME TO DRAW AN ELLIPSE USIN OFFSETS

REM SPACIMG BETWEEM THE DOTS LISED
FEM TO DRAW THE ELLIPSE IS VARIRELE
REM

REM SET COLOURS

REM

SC=12:1FC=6
GOSUB 10898

REM
REM ORAL BORDER
REM
GOSUB 400
REM

REM IMPUT ELLIPSE DRAWING PRRAMETERS
REM COORDINATES OF ELLIPSE CENTRE
Z$=""3T=16:TT=192:1FC=0 1RN=@ 1 A0=0
RH=0 :A$="7" :GOSUB 13009

T=40:G0SUB S0

HC=Z 1 2$="n

As="," 1G0SUB 13008:T=T+8

GOsSUB See

YC=2

IF ¥C<B OR YC<B THEH 350

FOR T=@ TO 160 STEFS:AD=1iRN=11A$="
REM ELLIPSE RRDIUS
Z$="":T=16€ 1AD=0 :RH=0

A="72" :GOSLR 13060

T=40:1GOSUB 508

RA=Z

FOR T=0 T0 160 STEF 8:RH=1:AD=11As="
REM DDT SPACING

ZE="" 1 T=16:AD=0 1RH=0

Ag="72" 1GOSUB 13200

T=42:60SUE S60

D3=2

FOR T=@& TO 160 STEF 8iRM=1i1AD=11Ag="
FEM ELLIPTICAL OFFSETS IN ¥ AHD ¥ AX
Z¢="" : T=16 sRN=6 :1RD=0

AE="7" :GNSUB 13000

T=4R1605UR 500

QR=Z 1 Z2¢=""

As=" " :GOSUE 120001 T=T+8

GNsSUB 580

Qy=Z

FOR T=@ TO 166 STEP 8iRN=1:1AD=1:A¢="
REM

REM DRAM ELLIFSE

"1GOSUR 13000 tHEXT T

"100SUB 13000 :NEXT

" 160SUE 12008 sHEXT
1s

"160SUB 12660 tHEXT

63

285 REM

218 DS=DS#n/180 1RN=0:AD=0

228 R=RA

229 FOR P=@ TO 2%n STEF DS

233 REM

248 X=R¥COS(PI¥OX

250 Y=R¥IIHI{PIRDY

270 X=X+XC 1¥=Y+YC

275 IF ¥<8 OR ¥<2 OR ¥>19@ THEN 230
288 PC=2:60SUB 120@0

298 MEXT P

300 GOTO 198)

250 POKES3265.27 1POKES3272.21
266 POKES3280, 14 :POKES2281 .6 :1FRINT "XI" ¢
378 END

325 REM

400 REM BORDER DRAWING ROUTINE
485 REM

410 X1=0:Y1=0:R0=0

420 K2=319:¥2=0:050SUE 11000

4320 X1=X2:¥Y1=Y2:¥Y2=196:G0SUB 1100
440 X1=X2:¥Y1=Y2:X2=0:CG0SUB 11009
458 Xi=x2:1¥1=Y2:¥Y2=0:G0SUE 110600
468 RETURN

495 REM

508 REM INPUT DATA

S0% REM

510 GET A$:IF A%="" THEN 510

520 IF (ASCCA$I<48 OR ASCCASIDSTY AND ASCOY-" AND AKO"."
THEN 55@

S33 RH=@:1G05UB 1380Q:T=T+3

540 Z$=2¢+AL:60TO SiQ

559 Z=VAL (Z$>

560 RETURM

19908 REM SET UP GRAPHICS SCREEM
16910 POKEER,.EC+PC¥16

19820 SYS<(28672) 1POKES3288.,.5C
18028 RETURM

11600 REM DRAKM A LINE BETHEEM X1.¥Y! AND X2.Y2
11018 FOEER22.X1-INT(X1/256)>%256
11026 POKESZS., INT(X1/256>

11933 POKES20.Y1:FPOKES31 .0

11648 POKE832.H2-IMNT(X2/206)¥256
11850 POKES33, INT(X2/256)

11068 FOKES24 Y2 :POKERRS.0

11979 FOKEYS6.R0

11928 POKESYS.PC

11036 SYS(22153)

11120 RETURM

12000 REM PLOT R FOINMT

12010 FOKESS . X-INT(K/ 206> %206
120268 POKESA. INT(X/ 256>

12033
12948
12045
12858
1206a@
13000
13e18
13020
12839
132248
12658
13060
12678
13029
12026
RERDY.

POKES1 .¥

POKE?34.AD

POKES?9.PC

SYS(28732>

RETURM

REM DISPLAY R CHARACTER
POKES6E . T-INT(T/ /256> %256
POKEZ67 . INTC(T/256>
POKESEE , TT :POKESES,8
POKES?O .ASC (RS>

POKES71 ,RN

POKE?S84 .RD

POKES?S . PC

8YS(29743>

RETURM

65

INTERPOLATE
DESCRIPTION

Determining a set of data is all very well, but it is the interpolation of
that data that produces the all important results. One common
method of doing this is to take the data and turn it into points on a
graph, and then perform the interpolation on those points. The
program ‘interpolate’ does just that, by assuming that you already
have your data in the form of X and Y co-ordinates. You could quite
easily incorporate your own data into this program simply by
changing the data statements in line 180.

RUNNING THE PROGRAM

The main bulk of the work is done by a) line 180, which stores the
data as X, Y co-ordinates, and b) line 200, which determines which
point we start at (here it is the first one), which one we finish at (here
it is the twelfth), and which points we interpolate between (here it is
every one, although by changing the variable SP in line 200 we
could easily take every other point, for instance). Once we've
calculated the scaling factors in lines 410 to 490, and turned those
into point increments in lines 510 and 520, we plot the actual point
in line 640, and the line between each point by the routine in lines
67010 720.

PROGRAM STRUCTURE

A brief description of the program lines is as follows:
Lines60-70 : Set colours and go into hi-res mode

90 : Draw border round screen using subroutine at
1000

110-160 : Read and store data

180 : Datastored as X, Y co-ordinates

200 : Determinate start and end points and separation

220-230 : Determine position and dimensions of graph
screen

310-385 : Draw border round graph and label graph

410-490 : Determine scaling factor

510-520 : Convertscaling factors to point increments

610-720 : Pointand line drawing routine

1000-1060 : Draw border around screen

10000-10020 : Subroutineto call setup routine
11000-11090 : Subroutineto call line plot routine
12000-12060 : Subroutineto call point plot routine
13000-13120 : Subroutineto call character plot routine.

66

i REM INTERPOLATE

2 REM sdehpsdoriohk dlobk ank ook

2 REM

19 REM PROGRAM TO DRAM A GRAFH BY INTERPOLATIHNG
20 REM A SET OF POINTS STORED AS DATA STATEMENTS INM
38 REM LINE i€0,

45 REM

S8 REM SET COLOURS

55 REM

EB SC=12:FPC=6

70 GOSUB 10008

73 REM

€0 REM DRAW BORDER AROUND SCREEN
85 REM

%@ GosSuB 1000

93 REM

1690 REM INITIALISE DATA

195 REM

110 DIM X<12>

128 DIM Y12

133 FOR I=1 TO 12

140 READ XCI>

158 RERD YC(ID

160 HEXT I

163 REM

17@ REM DATA STORED AS X AHD ¥ COORDIMATE
175 REM

128 DATA1.16.2.25,5.30.4.20,%.40.6.30.7.%0.8.20.9.25.10,50,
11.30.12,20

125 REM

190 REM MIN DIMENSION =1, MAX =12. SEPERATION =1
195 REM

2D0 DH=1:0X=121SP=1

205 REM

218 REM POSITION AND DIMEMSIONS OF GRAFH ON SCREEN
215 REM

220 XL=20:XR=300

230 YB=170:YT=S0

295 REM

300 REM DRAM EBCORDER ARCUND GRAPH

305 REM

310 X3I=XR+10:1¥3=YE+101AD=0 :PC=0

320 K4=XR+10:¥4=YT-10:G0SUB 11000

T3O MA=R4 Y=Y 1X4=KL~101GOSUE 11006

340 %3=X4 :1¥3=Y4 1¥4=YB+10 :G0SUB 11000

THO K2=H4 1¥A=v'4 1X4=XR+1B1GOSUB 110600

355 KI=CKR-XL)/<DX~0M)

360 FOR ®=XL TD XR STEP I

265 FOR A=18 TO 13

370 Y=YE+R:GOSUE 12000

375 NEXT RiMEXT ¥

67

388
285
395
4069
403
410
422
430
440
450
4¢@
470
430
499
495
Soa
585
S19
520
a5
={al)
€03
610
6209
630
€69
579
&80
€90
7o
710
rae
200
81a
820
920
10609
19835
1914
1628
16039
1840
1050
1860
1000
10681
1082
1160
11et

Af=" INTERFOLATED GRAPH" 1X=80:1Y=201XX=81YY=0
RH=0 1AD=0:1PC=21G0SUB 13060
REM

REM CALCULATE SCALING FACTORS
REM

¥1=-160000a

Y2=1900000

Ki=y1 1 K2=Y2

FOR I=DN TO OX STEP SP

IF Y1<¥<I> THEN Y1=¥<I)

IF ¥Y2>¥<(I> THEHN Y2=Y(I)

IF H1<XC(I> THEM X1=X<{I>

IF X2>XCI> THEN %X2=X<I)

HEXT 1

REM

REM CONVERT SCRLING FACTORS INTO POINT INCREMENTS
REM

A=CRR=XL I/ (X1-K¥2)
B=(YB~YTI/¢Y1-Y2)

REM

REM PLOT GRAPH

REM

FOR I=0ON TO DX STEP SP-
K=CRL+CRCIDI=X2D¥AD 1X3=

Y= YR-CP (I I-Y2 ¥R 1¥Y3=Y

PC=1 :AD=G:1GOSUR 12009

Q=1+%P

IF Q>DX THEN 2006
®=CXLACHOAI—K2I¥AD 1X4=X
Y=(YB-CY (R -Y2D ¥B) 1Yd=y

GOSUB 11980

NEXT I

GETAS: IFA$=""THENID2
POKESA2S0, 14 1IFPOKES3281 . 61PRINT I
POKES3I26S, 27 1FOKES3272. 21

EHD

REM DRFW BORDER ARCUNMD SCREEN
REM

K3=0 1YI=0 1A0=0

¥4=319 1¥4=B81G0SB 11090
K=K Y FatS 1Y4=199 160SUB 11000
NA=}4 tYR="v4 1%4=01005UB 11820
$3=K4 1Y I=YY 1Y4=01G0SUR 11008
RETLIRN

0 FOKEES ,SC+FCHELE

0 SYS(22672) 1POKES3280.5C

A RETURN

0 POKE 228.%X3-INT(X3/256)%256

A POKESZ29., INT(XR/256)

11820 POKES38.Y3:POKES31.0

1163

68

B POKES3Z.X4-INT(R4/25€2%256

11949
116856
11069
11a7e
11230
11696
12608
12818
12029
12826
12648
120%0
12068
12068
13010
13020
13830
12840
13958
12060
13874
13620
13620
12106
13110
12120
RERDY.

POKE&32 . INT(X4/256>
FOKEZ324.%Y4 :FOKESSS5.0
POKE?86 .AD
FOKEE?T3.FC
SYS(22138)

RETURM

POKESS . X-IHNT(¥A256)>%256
POKESA . INT(X/ 2563
POKES1 .Y

POKE?84 .AD
FDKE27S.PC
gys(aarea>

RETURN

FOR I=1 TO LEH(A$D
Ex=MIO$CA%.I.1>
FOKEBEE . XK~ INT(X/256) %236
POKESE? . INT(XA/256)
POKESES .Y IFOKESES . Q
POKES7R . ASC(RE)
POKES?71 .RN
POKES?3.PC

FOKET34 .AD
SYS(23743)>

¥=K+XX p'r=Y+iYY

MEXT I

RETURM

69

odllddS

SPRITE THEORY

Sprites are hi-resolution blocks 24 pixels wide by 21 pixels high.
The Sprite is stored in a 63 byte area of memory. As only one bank
of 16K of memory may be addressed at any one time, using the
video chip, a total of 240 Sprites may be defined (1K of that 16K
memory is reserved for the screen). Although 240 Sprites may be
defined, only 8 of those Sprites can be displayed on the screen at
onetime.

The Sprite may be moved anywhere within the screen and will
not disturb any display already on the screen, i.e. it passes over (or
under) the display. Sprites may be moved in distances of one pixel,
giving the effect of continuous movement.

Sprites are controlled using the 47 registers of the video chip
starting at address 53248($D000). Below is a diagram of these
registers.

ADDRESS DESCRIPTION

00 ($00) Sprite 0 X position

01($01) Sprite 0 Y position

02($02) Same as 0and 1 for Sprites 1-7

15 ($OF)

16($10) M.S.B. of X position. SPO in bit O, SP1 in bit 1 etc.

18)$12) Raster Register

19($13) Light Pen X co-ordinate

20($14) LightPen Y co-ordinate

21($15) Sprite enable register. SPO in bit 0, SP1 in bit 1 etc.

23($17) Sprite expandin Y. SPOin bit 0, SP1in bit 1 etc.

24 ($18) Memory pointers, bit0 not used

25($19) Interrupt Register, bits 4, 5, and 6 not used

26 ($1A) Enable Interrupt, bits 4, 5,6, and 7 notused

27 ($1B) Sprite-data priority. SPOin bit 0, SP1in bit 1 etc.

28($1C) Sprite Multi-colour Select. SPO in bit O, SP1 in bit
1 etc.

29 ($1D) Sprite expandin X. SP0in bit0, SP1in bit 1 etc.

30($1E) Sprite-Sprite collision. SPOin bit 0, SP1in bit 1 etc.

31($1F) Sprite-Data collision. SPOin bit 0, SP1in bit 1 etc.

32($20) Border colour

33($21) Background colour #0

34($22) Background colour #1

35($23) Background colour #2

36($24) Background colour #3

37($25) Sprite Multi-colour #0

38($26) Sprite Multi-colour #1

39($27) Sprite 0 colour

40($28) Same for Sprites 1-7

72

46 ($2E)

In registers 32-46, bits 4, 5, 6 and 7 are not used.

Two ‘POKE's’ are required to enable one Sprite. The first ‘POKE’
tells the computer which data block to look at when displaying the
Sprite. This is done by ‘POKE 2040+sp#,bl#’, where sp# is the
Sprite number (0 — 7) and bl# is the Sprite data block number (0 —
255). The starting location of the block is 64*bl#.

The second ‘POKE’ is to enable the Sprite, this is done by ‘POKE
53269, PEEK (563269) OR2 (to the power of) sp #.

The Sprite is not yet on the screen, as it must be given a colour
(or colours in Multi-colour Mode) and X and Y co-ordinates.

First, the colour; this is done by ‘POKE 53287 +sp#,col’ where
colis the colour from 0—15.

Then give the Sprite co-ordinates; thisis done by:

‘POKE 53248+sp#*2,Xand255’
‘POKE 53248+sp#*2+1,Y’

If the X co-ordinate is larger than 255, then a third ‘POKE’ is
required. Thisis:

‘POKE 53264,PEEK(53264)OR2(to the power of)sp#

These ‘POKE’s’ are useless unless a Sprite has previously been
defined. This can be done in two different ways. One method is to
take a sheet of graph paper and plot the points onto the paper.
When done, each of the 21 lines has to be split up into three equal
columns of eight points and a value calculated from these.

When this has been done for all of the now 63 bytes, the data can
be entered into the machine in consecutive locations, starting from
the first block location.

The second less tedious method is to use a simple Sprite editor.
This has been developed to allow the user to use the screen as
graph paper, the same program writes the Sprite as data at the end
of the editor. More information about the Sprite editor can be found
in the description of the program.

At the beginning of this section we mentioned that a
maximium of 240 Sprites may be defined at any one time in the one
memory bank. This is impossible in memory bank #0, since it is
used for pointers and important variables, in addition, it is the
bottom end of the basic programming area. This can be overcome
by selecting another bank. An easy process allowing the user to
have lots of Sprites available. The ideal bank to select is bank 2, this
is the only bank, other than bank 0, that has a character set
available. The process for selecting this memory bank is as follows:
‘POKE 56578,PEEK(56578)OR 3’

‘POKE 56576,(PEEK(56576)AND 252)0OR 1
‘POKE 648,60’
‘POKE 53272,(PEEK(53272)AND 15)OR 240’

73

In order, this routine sets bits 0 and 1 in the CIA #2 register to
output, selects memory bank 2, and puts the video screen atthe top
end of that bank. The screen now resides at location 48128 - 49129,
the Sprite pointers are now from 49144 to 49151. Sprites can be
stored from block number 0 to 239 (the new location calculation is
64*bl#+32768).

The section of memory being used is still within the Basic
programming area, this must now be protected by lowering the top
of basic pointers and the string storage pointers. This is done by:
‘POKE 56,128:POKE 53,128:CLR:NEW'

The co-ordinates of the two Sprites should be slightly different if
they are next to each other. If the Sprites are unexpanded, the
difference in the x co-ordinates is 24 and in the y direction is 21. For
expanded mode the difference should be doubled. By having more
than one Sprite defined in memory and there being a slight
difference between the Sprites, dynamic displays may be produced
by switching between one Sprite and another in a timed loop. This
can be done by changing the value in one of the Sprite block
pointers (2040-7) between the block numbers of the different
Sprites. By using varying time loops, rapidly changing and/or
slower displays may be created.

74

75

SPRITE GENERATOR

DESCRIPTION

The Sprite Generator facilitates the editing of up to 32 Sprites in the
64’s memory. The Sprite being edited is displayed on the screen. If
a point is on, there is a large dot, if off, a small dot. The actual Sprite
is displayed in the bottom right hand corner of the screen. Options
for editing the Sprite are displayed on the screen continuously. The
program allows only the editing of standard hi-res Sprites, not
Multi-colour (it should not be too difficult to convert it to
Multi-colour use). Sprites are stored in the top end of memory bank
0, the video screen is in the normal place. The display is set up to
emulate a large piece of graph paper and a coloured cursor shows
the position on the grid, where any changes can be made. The
Sprite is changed by positioning the cursor at the correct pointand
pressing '+ to turn that point on, or - to turn that point off.

RUNNING THE PROGRAM

The program will display, when run, the title as a Sprite. This may
be cleared either by pressing ‘SHIFT/CLR-HOME' to start editing or
just hitting ‘N’ to move to the next Sprite. If a lower number Sprite is
required, press ‘E’ in response to the question of which Sprite
number. Entering the number (0-31) will then make that number
the present Sprite. To store the Sprite press ‘B’, and the computer
will write the Sprite values into DATA statements at the end of the
program and return to the current Sprite. Pressing ‘C’ will allow a
choice of colour for the Sprite (0-15). ‘M’ allows the user to move
the Sprite around the screen under control of the keyboard. ‘X’
followed by either 'x’ or ‘y’ (for x or y co’ordinate expand) will
change the status — if expanded, it will make the Sprite smaller and
vice-versa. Finally pressing ‘Q" will quit the program.

After editing and writing the Sprite as data, listing 30000 — will
show the data for the edited Sprites. This has to be saved or the
Sprite will be lost.

PROGRAM STRUCTURE

Abrief run down of the lines is as follows:
Lines90-100 : Checktoseeifthereis any datatoreadin.

140-220 . Set up Sprite pointers, positions and variables.
260-350 : Display Sprite onthe screen.

440-680 : Command link for keyboard input.

720-790 : Add a point.

830-910 : Goto a specific Sprite.

76

950-1030
1070-1110
1150-1180

" 1220-1330
1370-1520
1560-1610
1650-1850
1890-1950
2000-2150
2190-2290

: Delete a point.

: Ifany Sprites, enter them into memory.
: Setup an array of powers of 2.

. Inputforexpandinxory.

: Display control options.

: Clear present Sprite.

: Loop to move Sprite around the screen.
: Change colour of present Sprite.

: Adddatatothe end of the program.

: Dataforthetitle of program.

77

10 REM SPRITE GEMERATOR
12 REM

14 REM

20 FOKE ©29.222

29 REM

28 REM IF ANY SPRITE DATA.SET UF SPRITE
21 REM

40 FOKE ©22.0

50 READ SF

60 IF SP>BTHEN 81@

69 REM

78 REM NO MORE SPRITE DATA

71 REM _

20 GOSUB 860 :POKES22921 .2 :POKES2280 .2

90 DEFFMA(ZZ)=1064+R¥40+C

189 V=53248 :HO=PEEK(E29)

110 XL=@:YL=1X0=16:SE=21 tX¥=23 tXX=29
120 SC=39 :PRINT"I"

120 POKE 2040 ,.H0:FOKE Y+SE.1tPOKE VXY, 1
148 POKE V4¥X.1:POKE V4+XL.2551POKE V+YL.150
156 POKE V+XG.9

160 X=255:¥=150

169 REM

176 REM SET UP DISPLAY

171 REM

188 PRIMT =5] 1 ™

185 LOC=64%H0IFRINT 5"

199 FORI=LOCTOLOC+E2STER3

208 FORJI=8TO2

210 ZZ=FEEK/{I+J)

229 FORK=7TTOOSTEP-1

230 A=INT < (ZZAMDAKCKD D ZAHCKD)

240 IFA=1THEHFRIMT" %" 16070260

250 PRIWMT"a. "¢

268 HERXTK

270 NEXTJ

280 PRINT

290 MEMTI

Z@0 GOsUB1009

202 REM

218 REM SFRITE SET UP ON THE SCREEN

320 REM INPUT CHAMGES

221 REM

330 R=@:1C=0

340 Z=FHACB>

ASA POKEZ+54272.9

260 GETR$:IFAF=""THEMZ€O

370 FOKEZ+54272.1

280 IFAT="Q"THENFRINT"" tPOKEV+21 ,@1PRINT "1 1 :E
MO

390 IFA$="N"RNDC=23THEH C=8:6G0T0340

78

400
410
428
430
440

460
478
480
490
Sao
S10
528
536
S40
Sca
Jeo
Sre
574
&°3
g
580
598
€an
616
620
630
€40
€50
€54
€55
€56
€sg
MO,
E70
580
€90
700

710
720
724
725
726
730
740
7Sa
760
Ve
780
796

IFA$="11" THENC=C+1 1GOTO340

IFA$="N"AHOC=0THENC=23 :GUTO340

IFA$="M1"THENC=C-1 1GOT03406

IFA$="X"ANDR=20THENR=@ : GOTO340

IFR$="X"THEMR=R+1 :GOTO340

IFA%$=""Y"ANDR=THENR=28 :GOT0340

IFA$="""THENR=R~1 1GOTOZ4@

IFA$="8"THEMR=8 : C=@ : GLTO340

IFR$="71"THENGOSUE1 158 1G0T0348

IFA$="+"THENSEEH

IFA$="-"THEN?30

IFA$="M"THEM121@

IFA$="B"THEN1450

IFR$="C" THEHW 146G@

IFA$="X" THEHS90

IFA$="H"ANDNO-223<¢31 THEHND=NO+1 :GOTO1 20

IFA$="E" THEHEED

GOTO 34@

REM

REM ADC POINT

REM

2Z=FNACO>

Z1=PEEK(Z)>

IFZ1=81THEN340

POKEZ .81

EYTE=INTC(C/8)+R%3

BIT=7~(C-INTCC/8)%8)

POKEEYTE+NORES . PEEK (BYTE+NO¥E4) ORAXCEIT)

GOTO 34@

REM

REM IMPUT SPRITE # TO EDIT

REM

THPUT * s{nlxtale Ittt e eIl eI I (eI RN M S R B OB SFR T T
maur s

IFS<BORS>3Z1THEHEED

IF MO=223+STHENZZ=1 :60TO7@0

HO=223+S

PRIMT * ={aOalatautsgnTarelnTnIaiaTaTalalIninInin0n

)

IF22=1 THEMZZ2=6 160T0340

GOTO 130

REM

REM DELETE POINT

REM

Z=FNRA(B>

21=PEEK(2)

IFZ1=46THEN 340

POKE Z.46

BYTE=INT(C/8)+R¥3

BIT=7-(C-INT{C/8)%8)

POKE BYTE+MNO#E4 .PEEK (BYTE+NOKS4 > AND ¢ 255~A ¢

79

BITH>)>
eaa
304
285
=151
g1a
220
e3e
849
&sa
854
ass
856
e69
are
eso
a3
e94
295
a%6
=l

GOTO 249

REM

REM IF AMY DATA. SET SFRITES UP
REM

LOC=SP¥E4

FOR I=LDC TO LOC+E2

READ R:FOKE I.A

NEXT 1

coTo Se

REM

FEM SET ARRAY WITH FOWERS OF TWO
REM

FOR I=0 TO 7

AXCI =211

HEXT I

RETURN

REM

REM IHPUT FOR EXFAHD

REM
FRIMT" EInIAIATATA TN NIRRT e TR TeTn T IR LRI eI I B M RORPRREEN

TER % OR Y

210
2ze
aza
240
ot lc]
=)
arve
agn

290
994
il
99¢€

GETH#:IFHi()"X"HNUH$<}"?"THEH99@
IFAE="%"THENIEO
IFPEEK(V+X?)=1THENPGKEU+HV.G:GGTOSBB
POEEV+XY . 1
GOTO928
IFPEEK(V+XX)=1THEHPDKEV+KX.B:GOTGSGB
POKEW+XK .1
PRIHT"ﬁﬂﬂﬂﬂﬂﬂﬁﬂﬂdﬂﬂﬂmﬂmﬁmmﬂkﬁllIIIIIIIII
"

GOTO 340

REM

REM DISFAY COMTROL OFTIONS
REM

16008 PRINT"ASPCC26" AOHTROLEm"
1005 PRINTSFC(ZS)"SFRITE # HO-2273
1010 PRIMT:FRIMTSPCC(ZD" HEMIT SFRITE #°

} ggg PRIMTSECCES) " RWEXT SPRITE #

FRIMTEPCCZSY " pimOVE SFRITE™

1640 PRINTSPCC25) " CMILOLR CHAMGE"
10950 PRINTSPC(25)" RWFAND"
1060 PRIMTSFC(2S)" M ADD DOT"

1ave
1086

FRIMTSPC(Z5) " g-m REMOVE DOT
FRIMTSFCC2S) "sEMASIC DATA"

1@90 PRIMTSPCCZS) " umIIT"

1108
1118
1120
1128
1140

80

PRIMT tFRIMTSPC(25) "USE CURSOR "
FRINTSPC(25) "COMTROL TO"
FRINTSFCC25Y AOSITION"
FRIMNTSPC(25) "CUREOR. "

FETLURM

1144
1145
1145
1156
1160
117a
1120
1198
1298
1204
1265
1266
1219
EYS TO
1226
1230
1248
1250
12ea
127a
1280
1239
1300
1310
1226
1338
1240
12589
13€a

REM

REM CLEAR PRESENT SFRITE

REM

FORI=GTOE2 :POKEHO¥E4+] , B IHEXTI
FORI=ATO2@

FORJ=@TOZS

FOKE1RE4+ %40+ . 46
HEXTJ. I :R=8:C=6

RETLURM

REM

REM MOVE SPRITE AROUMD SCREEM
REM

FRINT" eTelainlslelninlainialaleln Il INMALISE CURSOR K
MOVE THE SPRITE."
FRINT"SRETURN TO RETURN TO EDITIMG"
GETAf: IFAF=""THEN1 23R
IFAS="M"ANDXCI L STHENR=X+2
IFAF="N"AMNDK> 1 THEHX=X~2
IFA$="N"ANDY<2S4THEHY=Y+2
IFA$=""1"AHDY> 1 THEHY=Y~2

FOEE V+YL.Y

POKE V4+XG ., INTIXA/255)

POKE V+XL X-THT{X/ 255> %255

IF AF=CHRE(13)THEH13230
GOTOiI218

POKE V+XL.255

POKE V4+YL.199

POKE V+XG.@

X=2T5:¥Y=190

1370 PRINT"nuﬂuuuuuugnuuumuuuuuuuu

1280 PRINT"
n"

1398 G0TO 340

1394 REM

1395 REM CHRAMGE SPRITE COLOUR

1396 RENM

1400 THPUT " s{alalalalsTelainlsIalaTe I aln sl e TR N R M D R R R R 520
LOUR (B-1%)> INNER" :CO

1410 IF CO<BORCO>1STHEM1460

1428 FOKE V+SC.CO

1430 PRIMT " s{aeiaIaldaialninlniaTnTslal el eIaInTATaIN]

0"

14468 GOTO 340

1444 REM

1445 REM CREATE DATA STATEMEHTS FOR

14446 REM PRESENT SPRITE

1447 REM

1450

PRINT" INeIN" : FEEK (R28)+320060 : "DATARIGHTH(S

TRECHO) ,LEMC(STRECHON)~1)

1468

FOKES28.PEEK(825)+1 :FORI=ATOS

81

1470 PRINTPEEK(828)>+38000"DRTA" 3
1429 FORJ=QTO6
1499 BB=PEEK{(HO¥E4+I1¥7+J)

1529

BB$=RIGHT$(STR$(BB).LEH(STRS(BB))—I)

1518 PRINTEBBS$:"."?

1528 NEXT J

1520 PRINT"I " s POKES23, PEEK(8283+1
1540 NEKT I

1550 PRINTPEEK(828)+3GOBB!“DHTR—1”

156a
157a

FRINT"RUNEOR"
POKE 198.12

1589 FORI=9T011!POK5631+I,13:HEXT 1

15982

20089
260001
20002
20003
20004
208035
29906
20007
20063
20009
29937
259998
29992
380a1
RERDY

82

POKES22 . HDIEHD

DATAR223
DHTHE38.231.119.138.146.36.239
DRTREZS.38,49,162.36.232.151
DATAZ29.0.0,08.236.238,238
DHTHISB,SS,169.292,68,1?4,138
DATAES . 17@.236.228,233.0.0
DATAB.0.9,0.0,234.8
DATAD.128.9.14.238.2.0
DATR162.2.0.226.0,0.9
DATARR.0.0,0,255,255,255

REM

REM SFRITE DATA STORED FROM HERE
REM

oATA -1

SPRITE DEMO
DESCRIPTION

Sprite Demo uses two Sprites to create a display. The Sprites were
created using the Sprite Generator program. The Data statements
were ‘screen merged’ into the demo program after removing them
from the editor by listing the Data lines and deleting the editor. As
the name suggests, this is only a demonstration program. It makes
full use of the colour set, expand, and movement functions.

RUNNING THE PROGRAM

To run the program, load, and type ‘RUN'. The display will appear
after a couple of seconds since the Sprite Data must be read into
memory from the Data lines at the end of the program. When the
display appears follow the instructions to expand the display,
change the colour, and move it about the screen under control of
the cursor keys.

PROGRAM STRUCTURE

A brief synopsis of the program lines is as follows:
Lines10-80 : Read the Sprite data into memory at the required

block.

110-140 . Setup Sprite pointers.

150-160 . PutSprite on the screen.

170 : Enables SpritesOand 1.

180-200 : Wait for key press.

210-270 : Disable Sprites, enlarge, reposition and re-enable.

280-340 : Loop to change colour of Sprites.

350-460 : Loop to move Sprites under control of the cursor
keys.

470-490 : Turn off Sprites and end program.

30000-30020 : Data for Sprites.

83

1@ FORI=ATOL

20 READ HO

30 FORJ=BTO&2
4@ REARD ¥

50 POKEMO#E4+T X
€@ HEXT J

78 FOKE2048+1,H0

20 NEMT 1
g PRINT"IER DEMOMSTRATION OF HOW TO USE MORE THAM *:
186 PRIMT"R ONE SPRITE TO CREATE A DISFLAY =

119 v=53242:1REM START OF VIDED CHIP

120 POKEV+32 . 12 POKEV+33, 12 sREM SCREEN AND BORDER COLOURS
120 POKEV+23, B tFOKEV+29 0 :1REN X AHD ¥ SHMALL

135 POKEV+32 , 2 tPOKEV+40 .2 tREN SPRITE COLOURS ARE RED

148 K=15@:¥Y=150:REM COORDINATES OF SFRITES

150 POKEY.X:POKEV+L.Y

160 POKEN+2 ,3+24 1POKEV+3 .Y

178 POKEV+21.3

186 FRIMT" L RERPCCROLLEL DL

190 PRINT" mHIT AHY KEY TO SEE EHLARGED PICTURE A"

200 GETAS$: IFAF=""THENZOR

210 POKEY+21.0

220 PRIHT"Hﬂmﬂmﬂmﬂﬂnﬁﬂﬂﬂﬂﬂﬂﬂﬂmﬂ"

220 FRIMT"

235 K=126:¥=140

240 POKEV+23.3:POKEV+29.3!REM ¥ AND ¥ EMLARGED
250 POKEVY:XsPOKEWV+1.Y

269 POKEY+E . X+48 tFOKEY+3.Y

278 POKEV+21.3

290 PRIHT"Nﬂﬂﬂﬂmmﬂﬂﬂﬁnﬂﬂﬂﬂﬂﬂﬂuﬂ"

208 FRIMT" @3 CHOOSE A COLOUR <@-9, RET TO EXIT A"
zpa GETAS$: IFAs=""THEN30A

310 IFA$=CHR$¢ 13) THENZ50

226 R=VAL(A¥

ags EE%EggSS.R:PGKEV+4@.H

250 PR INT " Melselaiatelaiarelaaneialalamier

26@ FRIMT" aMOVE THE FICTURE WITH THE CURSOR KEYS"
378 FRIMT" ® HIT RETURN TO END DEMQ 3"
280 GETA%:IFA$=""THEHZE0

-

298 IFRS="H"ANOY<25STHEHY=Y+1 :50T0440

408 IFA$=""1"ANDY>OTHEMY=Y-1 1GOT(440

418 IFAfF="MN"AHDXL2O7 THENK=X+1 :G0T0448

420 IFAF="11I"ANDX>ATHENRX=X~1 1GOT0O440

425 IFAF=CHR$(13>THEN47A

430 GOTO38@

448 FOKEV.X:POKEV+L .Y

458 POKEV+2 . X+42 3 FOKEV+3,Y

468 GOTOZS8a@

478 POKEV+21 .0 :PRINT"IX3" :

488 FOKEY+33.6:POKEV+22,14

43¢ END

20000 DATAZ24

32921 DATARO.0.8

20602 DATAD.0.8.

28063 DATABR.A .0,
7.
1

» -

a.n Q
@8.9.6.0
0.9 3
31 121,15

128.0,28

%)

29084 DATAO.0.
20005 DATAZ53. .
36066 DATRG.6.28.0
20007 DATRO.14.0.0
spees DATA7.1.2.21,
20002 DATA255.0,7.255
2e0ia DATAZZS

20011 DATAO.0.R8.0.9.0.0

0012 DATAN.0.8.122.0,2.240

39913 DATARAQ.7.248.0,255,255.2

20814 DATAR2SS,235,248,255. 255 248 56
30@1S DATAL1S92.0.56,.6.0.112.08

3wa1e DATRA.112.0.6.224.0.0

30017 DATA224.8.9,192,0.0,192

3E018 DATAR.0.252.0.0.2%4.0

30219 DATR.252.0.08.0.0.0

38020 UDATAR-1

RERDY.

e.
a,
,8.
31,255
92.7.255.
.G5.0.14,
271,09
235.8.15
-0.2.9

CHARACTER THEORY
USER DEFINED CHARACTERS ON THE 64

Sprites on the 64 provide the means to define shapes and move
them about the screen with reasonable ease, but they have their
limitations. Only 8 Sprites can be displayed on the screen at any
one time. If a shape the size of an ordinary character is needed, a lot
of superfluous data is involved in defining the Sprite. In addition,
Sprites are not obtainable directly from the keyboard, they have to
be presented, coloured, and moved with a series of POKE
statements or the machine code equivalent.

For those users who need to define their own shapes which are
normal characters and directly usable from the keyboard, then user
definable characters offer a solution. It is possible to replace, by
software, the entire set of characters resident inthe CBM 64.

However, for most purposes, a number of the normal characters
(such as the letters and figures) will probably be required in
addition to the shapes the user may design himself. The reversed
image of these characters is the area best suited for the user to
place his own designed shapes, thereby leaving the normal
character set available.

Every character on the 64 is designed on a grid of 8 by 8 bits
giving a block of 64 bits per character, each bit is called a pixel. If the
user examines the two characters @ and A on their grids they
would appear asinfig. a.

fig.a

Note that with these characters, the bottom, left, and right hand
edges of the grid have been left empty. This is to prevent adjacent
characters merging into each other when they are printed on the
screen. Graphics characters can go right to the edge of the grid,
they will then join up with each other, enabling them to be used to
create pictures.

To define characters, first draw themonan 8x 8 grid asshownin
fig. b.

86

fig.b

All the squares which are filled in, will be switched ‘on’, and are
therefore bright points on the screen, whereas the empty squares
wiil be ‘off’ and thus dark and invisible. The user will have to tell the
computer which squares to switch on and which to switch off. This

is accomplished by giving each column of the grid avalue between
1and 128 as shownin fig. c.

128164132116} 8 421

(a)
(b)
(e)
(d)
(e)
(£)
(g)
(h)

fig.c

87

Look at the top row (a) of the grid and add together the values of all
the squares which are to be ‘on’. n this particular case the result is
24. Repeat this for all the remaining rows (b to h).

There are now 8 values, and these are shown in the table below.

Row (a) 24
Row (b) 60
Row (c) 126
Row (d) 255
Row (e) 24
Row (f) 36
Row (g) 66
Row (h) 129

These 8 values are needed to inform the computer which bits
(pixels) should be switched ‘on’ and which should be ‘off'.

Having designed the character on paper and calculated the
necessary values from the drawing the user may now turn to the
64.

The shape of the resident characters in the 64 is stored in ROM,
and as such cannot be altered by software. However, there is
nothing to prevent the user copying this ROM into RAM where it
can easily be modified.

The ROM containing the shapes of the 64's resident characters is
to be found at address 53248 ($D000) to 57343 ($DFFF). Because of
the way the 64 is configured, it is not possible to access this ROM
directly. It is sandwiched between the /O ROM (sitting at identical
memory addresses on the top of it} and RAM {(underneath it).
Uncovering the character ROM by switching away the overlying /'O
ROM can easily be accomplished with POKE 1,51. However, the
system interrupts expect to find the /O in place, so the user
must first disable the interrupts with POKE 56333,127. If this is
not done, the machine will crash. The firsttwo lines of a program to
enable user defined characters are now ready.

Having released the character ROM for access, the character
data can be copied into ROM. The characters transferred in the
program are the first 256 characters from the character ROM.Todo
this:

FOR I-0t0 2047: REM 2048 BYTES
POKE 12288+I,PEEK(53248+)
NEXTI .

All the required characters are now in RAM starting at location
12288. The 64 is still, however, using the character ROM.

The next step is to restore the /O and the interrupts by:

88

POKE 1,PEEK(1)OR4
POKE 56334,PEEK(56334)0OR 1

The computer must then be instructed to use the new character
set, and for this another POKE is required. This is POKE
53272,(PEEK(53272)AND240)+12. The new character set is now
being used by the processor to generate the display. The only thing
left to do is change the characters used, by changing the values in
memory to those created in the grid design. If at any time the
original character set is required, POKE 53272,21 will restore the
pointer to the ROM image.

89

CHARACTEREDITOR
DESCRIPTION

This program facilitates the editing of up to 64 characters in the 64's
memory. There are two sections to this program, the first section
displays the characters that can be edited, the second section is the
editing routine.

To choose a character to edit, move the cursor to the required
character and enter either ‘E’ for edit or ‘N’ which clears the
character and edits. When in edit mode, move the cursor using the
cursor keys over the enlarged character and use the keys '+’ and -/
to change a point. To write the character as data, enter ‘B’, and
when the character has been updated, typing ‘R’ will return to the
first display where the newly edited character is displayed in full
size.

RUNNING THE PROGRAM

The editing of characters is like the Sprite editor except for one
difference, the character is not changed in memory unless the ‘=’
key is pressed, updating the character. When run, the program
firstly copies the character ROM into RAM. There is a long pause
whilst this is happening, the display will then appear, after which
just follow the controls displayed on the screen.

PROGRAM STRUCTURE

A brief run down of the program lines is as follows:
130-320 . Copy the characters into RAM.
330-350 . Define functions for editing.
360-400 : Display ‘N’ character.
410-610 . Input from keyboard and cursor control.
710-770 : Commands for editing character.
810-840 . Commands for choosing character.

1010-1170 : Display character set options.

1210-1300 : Display editing options.

1520-1540 : Endprogram.

1610-1700 : Update character.

1810-1910 : Editcharacter.

2010-2160 : Add’Basic’ datastatementstothe end of program.

90

1 REM CHARACTER BUILDING
2 REM sdokbibpssobiobk ik ihonk

2 REM
130 POKE S3220.2:P0KE 52281.2
14@ FRINT"I ¥ CHARACTER BUILDING %"

156 FOKE 828.@

169 RUN 170

170 Cs=12288

173 POKE 56334 .PEEK(S6234)AMND2%4 :POKE 1.PEEKC1)AND2S1
128 FOR I=CS TO CS+2047

198 FOKE I.PEEK(S3248+I1-CS)

208 MEXT I

205 FOKE 1,PEEK(1)0R4:FOKE S6334,PEEK(%6334)0R1
219 FRINT"JS RN 286"

228 FRIMT"RUN"

2320 POKE 192.3

240 POKE £31.19

259 POKE €32.13

268 POKE 633.13

278 EHD

2280 S=1024:CL=40

298 CS=12288

308 CR=0:LM=20000+FEEK(828)>

319 P=24:B0G=1:BR=1

320 FOKE 53220.2:POKE 53281 .2

33@ DEFFHACKX)=S+R¥2¥CL+2%C :REM SCREEN POKE LOCATION
348 DEFFHB(XX)=8%R+CIREM SCREEN FOKE VALUE FOR CHHR
252 GOTO 10060

368 FRIMT"II9":GOSUR 1200

370 PRINT"H"::FOR I=Q TO 7

380 PRIMT". . . « « « . J"tPRINT

388 MNEXT I:F=@

400 PRIMT"H" :R=0:C=0

418 Z=FHACB>

420 IF F=0 THEMN 450

428 IF Z=ZL THEHW 450

448 POKE 2L .IL:2L=21IL=PEEK(2L)

452 FOKE Z+54272.0

460 POKE Z+54272.0

478 GET A$:IF A$="" THEN 478

420 POKE Z+54272.1

439 REM

T08 REM CURSOR COMTROL OPTIOMS

3525 REM

510 IF A$="Q" THEN 1580

520 IF A$="d" AND C=? THEN C=0:G0T0O 410

9N

530
540
n5e
sea
S7e
5ea
Soa
€00
314
693
voe
a5
7ig
728
732
vae
7Se
76
770
Vo9
200
25
g1a
gz20
839
ed0
995
1009
100235
1018
1829
1928
1040
1050
1060
1e7a
1629
18%a
1100
1110
11208
1122
11489
1150
1169
1178
1195
1200
1205
1210
1220

92

IF Af="M" THEM C=C+1:60T0 410

IF A$="§" AHD C=0 THEHN C=7:100T0 418
1IF A$="N" THEM C=C-1:60T0 418

IF A$="W" AND R=? THEN R=0:00T0 410
1IF A$="3" THEM R=R+1:0070 41@

IF A$="71" AND R=@ THEN R=?:G0TO 410
IF As="71" THEM R=R-1:1G0TO 410

IF As="#" THEN 400

IF F=1 THEN 800

REPM
REM DEFIME MEW CHRRACTER OPTIONS
REM
IF As$="+" THEH POKE Z.81:60T0 41@

IF A$="-" THEN POKE 2.46:GOTO 410

IF As="=" THEN 1688

IF A$="7)" THEMN 370

IF AE="R" THEN 18082

IF A$="B" THEN 2008

GOTO 41@

REM

REM REVIEW CHRRACTER SET OPTIONS

REM

CR=FHE(O>

IF A$="H" THEM POKE 53272.21:1G0T0 366

IF A$="E" THEM POKE 53272,211F=01G0T0 180
GOTO 41@

REM

REM DISPLAY CHARRACTER SET OPTIONS

REM

POKE 53272 . (PEEK(S3272)AHD240) +12 1R=41C=0
ZL=FNACG) : IL=32

F=1:FRINT"O"»

PRINT"®2 A B C D E F G"tPRINT
PRINT"H 1 J K L M H O":PRINT

PRINT'"P @ R S T U V W"tPRINT

PRIMT"X ¥ 2 [£ 1 1t «"1PRINT

PRINT" | "CHR$(34>" # ¢ Z & U PRINT
FPRIMT"C > % + , = . /"tPRINT

PRIMT"® 1 2 3 4 5 6 7"1PRINT

FRINT"& 9 1 ¢ < = > ?"IFRINT

PRIMT"E"SPC(2%) " @PTIONSM" :PRINT

PRIMTSFCC(22>" @4 NEKW CHARE" iFRINT

PRINTSFCC(22>" @ EDIT CHAR®M"' :FPRINT
PRINTSFCC22)" @3 QUITE"

EC=FEEK (55296

5OTO 410

REM

REM EDIT OPTIONS

REM

PRIMT &g SFC(Z5) " @OPTIONSE" 1FRINT
PRINT

1228
1240
1256
12¢0
127
1280
1290
1206
1435
1590
1585
1510
1520
1532
1540
1556
1535
1606
16035
1610
1620
1630
1640
1650
1660
1670
16e8
1590
17ee
1793
1808
18835
1e1@
1820
1330
1840
135@
12366
137a
1e206
1320
1500
1919
1295
200
2085
2012
2028
2030
2046
2050

FRIMTSFCC(P>"+® ADD DOT" :PRINT
PRIHTSPCCP) @M ERASEY 1PRINT
PREINTSPCC(P) " @=M UFDATE" :FPRINT
FRINTSPCCR) " @RI REVIEM" :PRINT
PRINTSFCCPY " @2 QUIT" tPRINT
PRINTSFCCIPY" M RDD DATA" tPRINT
FRINTSFCCP+1)>"ISTRATEMENT"
RETURN

REM

REM QUIT

REM

REM

POKE S3272.21

POKE 53221.6:FOKE 53280.14
PRINT"I BYE!"

END

REM

REM UPDRTE
REM .
FRIMT"3" ¢
X=CS+8¥CR
FOR R=8 TO 7:
FOR C=@ TO 7:
EM=3M-2TD¥*(FE
NEXT C

POKE X+R.SM
PRIMTSRCC(17) :SM::FRINT

MEXT R:R=0:C=0

GOTOD 410

REM

REM EDIT CHRR

REM

PRIMT""

X=CS+E%CR

FOR R=0 TQ 7:Y=PEEK(X+R)

FOR C=@ TO 7:2=FNAC(@>

Q=45 1 Y=\YH2

IF Y¥>255 THEN 0=21:Y=Y-25¢

POKE Z2.Q:POKE Z+54272.,1

NEXT C.R

R=0:C=8

GOSUB 1z0a

GOTO 418

REM

REM ADD DATA STATEMENTS

REM

X=CS+2%CR

PRIMT " TTalntaealelels"

PRIMTLH:"DATA" ¢

PRIMTRIGHTS#(3TR$(X) .LEH(STR$(X>>-1
FOR I=X TO X+7

SM=@
D=7~
EKCF

0

A(D)>=81>

93

2068 PRINT"."*

2670 PRINTRIGHT$(STR$(PEEK<I)).LEN(STR’(PEEK(I)))—I):
2629 HEXT I

2023 PRIMT :FRINT"RUN #"
2108 FOKE 828,PEEK(828)+1
2116 POKE 198.9

2120 FOR I=8 TO €

2130 POKE I+531,13

2148 HEXT 1

2160 EHND

READY.

9

INJIANFOVNVYIN AV1dSIa

INTRODUCTION

The routines that follow in this chapter are for inclusion within
programs written by the user. They are very useful for setting up
screen displays.

This chapter is split into four sections. Each section concerns one
aspect of producing screen displays with machine code routines to
implement them. These routines are in the form of basic loaders
that must be run to use the example programs following them.

Some of the loaders in the later sections will contain routines from
previous sections. This is because they are required for the
demonstration programs to work.

All the routines that follow can be entered into memory at the same
time without any of them over-lapping.

96

DISPLAY MANAGEMENT

THE FIRST ROUTINE

The first Machine Code routine in this section is used by most of the

other routines to calculate the 64's screen addresses; the

addresses are returned in x and y. This routine is never called from a

Basic program, only by the other routines and should not be used on

its own, as this will cause a Machine Crash. This routine will also"
trap any errors and set an error flag.

SIMPLE DISPLAY ROUTINES

The first five routines in this section are the simplest routines in
Display Management and provide an insight into the methods
used in the more sophisticated routines in this section. All five
routines rely on the initial calculation of the screen memory ad-
dress of the first character in the line or block to be displayed, and
this is usually the top left corner character of that line or block. The
address is calculated from the line and column numbers which
designate the co-ordinates of the character, using the first routine
starting at $7000 (hex). All the display functions are performed by
the calculation of screen memory addresses using the starting
address as a reference point. The 1000 bytes of the screen memory
in the 64 can be subdivided into 25 smaller blocks (lines), each of 40
locations.

Drawing a line from the top to the bottom of the screen in
column 5 is simply a matter of filling every fifth location in each of
the 25 sub blocks with the desired ASCIl code value. Drawing a
horizontal fine across the screen simply means filling all the
locations in one line block of memory with the specified character.
The starting position within a sub block is determined by the
starting screen address and the length of the line is determined by a
variable transferred from the Basic program. Filling a block of the
screen with a specified character simply means repeatedly drawing
horizontal lines until the block is filled. To reverse field a line or a
block of the screen, the character in each screen memory location
has a logical Exclusive OR operation performed on it.

All the Machine Code routines have been turned into Basic
loaders and presented as such in this book. They have also been
programmedso that they are chained together and should be
entered in ascending order of line numbers.

97

SCREEN ADDRESSES

The subroutine used to calculate the screen addresses from values
in locations 89 for column and 90 for line, is only called by other
routines and will cause the 64 to crash if called on its own. This
routine also contains the error flag in location 785.

HORIZONTAL BAR

SYS (28800)
A horizontal bar of any 64 characters is drawn by this routine on the
screen, with a single character space resolution. The position of the
left hand end of the bar is determined by two variables: column
number and line number. The length of the bar can be a integer
from 1 to 255 character spaces, although the maximum line length
will be equal to the screen width. A variable allows the character
used to draw the line to be defined in the Basic calling program.
The routine requires the following variable locations:

89 column number of horizontal line start (left end).

90 screen line number of horizontal line start.

91 length of horizontal line.

784 ASCII code value of characters usedin horizontal line.

786 the screen colour is held in this location.
This routine is called from a Basic program with SYS (28800).

VERTICAL BAR

SYS(28832)
This routine draws a vertical bar of any 64 character on the screen
with a single character space resolution. The position of the left
hand end of the bar is determined by two variables: column
number and line number. The length of the bar can be an integer
from 1 to 255 character spaces, although the maximum line length
will be equal to the screen width. A variable allows the character
used to draw the line to be defined in the Basic calling program.
The routine requires the following variable locations:

89 column number if vertical line start (top end).

90 screen line number of vertical line start.

91 length of vertical line.

784 ASCII code value of characters used in vertical line.

786 this is the colour location.
This routine is called from a Basic program with SYS (28832).

98

BLOCKFILL

SYS (28896)
This routine fills a designated block of the screen with a previously
defined character. The position of the top left corner of the block is
determined by two variables: column number and line number.
The width of the block can be an integer from 1 to 255 character
spaces. Also, the height of the block may be an integer value from 1
to 255, although in practice the size of the block is restricted to the
screen dimensions. A variable allows the character used to fill the
block which is to be defined in the Basic calling program. This
routine requires the following variable locations:

89 column number of block start.

90 screen line number of block start.

91 width of block.

92 height of block.

784 ASCII code value of characters used in block.

786 the screen colour is held in this location.
This routine is called from a Basic program with SYS (28896)

INVERT

SYS (28960)
Invert reverses the field of all characters within a block of screen
area. The position of the top left corner of the block is determined
by two variables: column number and line number. The width of
the block can be an integer from 1 to 255 character spaces. Also the
height of the block may be an integer value from 1 to 255, although
in practice the size of the reverse field is restricted to the screen
dimensions. A variable allows the character used to fill the block to
be defined in the Basic calling program. This routine requires the
following variable locations: ‘
89 column number of reverse block start (top left).
90 screen line number of reverse block start.
91 width of reverse block area.
92 height of reverse block area.
786 is the colour location.
This routine is called from a Basic program with SYS (28960).

99

BORDER

SYS (29024)
As its name implies, this routine will draw a thin line border on a
specified area of the screen. The position ofthe top left corner of the
border is determined by two variables: the column number and the
line number. The width of the border can be an integer from 1 to
255 character spaces. The border height can also be any integer
from 1 to 255 although the maximum size of the border that can be
displayed is restricted to the outside edge of the screen. This
routine requires the following variable locations:

89 column number of border start (top left).

90 screen line number of border start.

91 width of border.

92 height of border.

786 location of colour.
This routine is called with SYS (29024).

CURSOR CONTROL

The Machine Code cursor control routine, a part of this package,
is called by SYS (29216), but can be anywhere in the memory,
providing it is protected from being overwritten by Basic. The
number of times the routine is called depends upon the values
placed in locations 87 and 88. This routine uses a loop to print
characters at specified points. If the user calls this routine on its
own, he must POKE the appropriate values into locations 87 and 88.
POKE 87, x co-ordinate value

POKE 88, y co-ordinate value

100

19 R
28 R
20 R

EM
EM kg iopgonk ki ko rlck ko dori ok ok
EM ¥POUTIME TO CALCULATE SCREEN *

48 REM #ADDRESS FROM VALUES FOR %

52 PRl

EM #* COoLuUMN IN 89 *

€0 REM * LINE IN) *

78 R

EM *ADDRESS RETURHED IN 21 AND 92%

80 REM ¥THIS ROUTINE IS ONLY CALLED %

98 R
100
110
129
122
149
158
168
17@
120
190
200
z21@
220
230
240
258
260
278
218
259
229
318
328
320
340
350
368
370
220
390
402
1002
1010
16026
1932
1640
1859
1066
1878
iegn
1030
1108

EM *BY OTHER ROUTIMES IN THE *
REM¥FPRCKAGE .00 MOT USE BY ITSELF.%
REM#ERROR FLAG IM LOCATION 78RS *
R P o o e e o sl ol o Ak g e
I1=28672:1T=0

RERD A

IF A=-1 THEHM 196

T=T+A:FOKEI.R

I=1+1

GOTO 140

FRINT"IROUTINE 11"

IF T=11873 THEN FRINT"XMEHNTERED O.K":1GOGTO 1000

FRINT"MMENTERED INCORRECTLY"
EMD
OATAIE2.8.141.17.3.165.89
DATA4E .66.201 ,48,176.74, 165
DATASG,48,82.201.25,176.90
DATA169.0.133.87.1332.88.133
DATAS4.,133.95.1€5.906.240.15
DRTALYVB.24.16%5,87.105.42,133
DRTAR27.144.2.230.88.202,208
DATR242.24.165.87.101.89.133
DATAE? . 1€5.88,1085.4.132.88
DATA24,165.87.133.94,165.88
DATAL1GT.212.133.95.96.169.1
DATR141.17.3,169.0,133,89
DATA?E.7.112.169.2.141,17
DATAR3.169.39.133.89.76.7
DATAL12.169.3.141.17.3.169
DATAR.133.90.76,7.112,169
DATA4.141.17.3,.1€69,.24.133
DATASQ.76.7.112,-1
REM
REM
RE PN b R AR AR NN NN
REM#DRAIK A HORIZOMTAL BAR OF AMY %
REM#¥64 CHARACTER.CHARACTER STOREDW
REM¥IN ¢34, COLUMN START IN 89, %
REM#LIME START IN 98, LEMGTH OF %
REM¥LINE IN 91. COLOUR IM 786, *
REM¥ROLUTINE CARLLED BY SYS(20800) *
FRE P e Aol N o N B 3 N NN N
I=282800:T=6

101

1110
1ize
1136
1140
1158
1168
1i7e
1186
1198
1268
1210
1220
1230
1240
2602
20108
2029
2038
zad@
2856
20€8
207e
2080
2092
2108
2118
zize
2120
2140
2158
21608
217ve
z2ige
2196
2200
2216
22ze
2230
2240
2250
2269
2270
3600
2810
2628
2930
@840
285a
208
3070
3680

102

RERD A

IF A=—1 THEN 1160

POKE I.R:T=T+A

I=1+1

GOTOD 1110

PRIMT"IOROUTINE 2:"

IF T=3@%5 THEN PRIWT"BEENTERED 0.K":GOTO 2000
PRINT"MEENTERED INCORRECTLY"

END

DATATZ2.152,72,138,72.32.6
DATA112.164.91.173.16.3.145
DATRS7.173.18,2.145,94.136
DRTAR20S.24%.104,178.104 . 168,104
DATAS6., -1

REM

REM

FE Ml AR iR AR Ak A
REM#DRAW A VERTICAL BAR OF ANY Gak
REM#CHARACTER. CHARACTER STORED %
REM¥IN 724. COLUMN START IN 895, *
REM#L INE START IN 96, LENGTH OF %
REM#LINE IN 91, COLOUR IN 786. *
REM#ROUTINE CRLLED BY SYS(28832> *
RE Mk SRR N A A
1=26832:T=0

READ A

IF A=-1 THEN 2160

POKE I.R:T=T+RA

I=1+1

GOTO 2110

PRINT"ZROUTINE 3:"

IF T=S29€ THEN PRIMTYMNENTERED 0.K.":60T0 Z@o2
PRINT"XEENTERED INCORRECTLY"

ENL!

DATA72.152,72,1328,72.32.06
DRTR11Z,166.68,166,91.173.16
DATAS.145.87.173,18,3.145

DRTAS4 .24 ,165.87,165,48,133
DATAR27.133,94,165,88.185.8
DATA133.568,165.212.133.95.262
DATR2GS.224.104,170, 104,168,184
DATASE.-1

REM

REM

RE MR AR AN AN o
REM¥FILL A BLOCK OF THE SCREEN *
REM#WITH A SPECIFIED CHRARACTER. ¥
REM#CHRARACTER STORED IN 784, TOF *
REM&LEFT COORDINARTES IN 82<COL> %
REM#AND SBCLINE> ., HEIGHT OF BLOCK*
REM#IN 91, WIDTH IN S2,AND COLOUR¥

3098
chycic)
3110
3120
2138
3148
2150
3160
3170
31e8
319@
3z00
s21a
&z20
32c6
2240
z25a
3260
278
3288
Z298
40008
4918
4Bz
4030
4040
405a
4066
4076
4080
4099
41600
4110
4120
4130
4148
4156
4160
4178
4180
4190
4206
4210
4228
4230
4240
4250
4250
S808
Sele
Se2e

REM%IN 736. *
REM¥ROUTINE CALLED BY SYS(2889€)> *
RE Mk ek pteoRsleq i dteRion polkop Rk ke
1=22896:7T=0

READ A

IF A=-1 THEN 3186

POKE I.A:T=T+A

I=I+1%

GOTO 3138

PRINT"IROUTINE 43"

IF T=5588 THEN PRINT"MMENTERED 0.K.":60T0 4000
PRINT"XMENTERED INCORRECTLY"

END

DATR72.152.72,138.,72.,32.0
DATAR112.166.92.,1€64.91.136.173
DATA16.3.,145.87.,173.18.3
DATAR145.84.136.1€.243.,24, 165
DATAS7,185.40.133,87,133,94
DATR144.4.236.8.238.95.2082
DATA208.222.194.178.,104.,168.104
DRTASE . -1

REM

FRE Mot e s o e 030 0o MO o o o o
REM¥INVERT R BLOCK OF THE SCREEN *
REMXTOP LEFT COORDINRTES IN €9 »
REM#(COL> AND S@C(LINE)>, HEIGHT Ih¥
REM#®S1 AND WIDTH IN S2. COLOUR IN¥
REM%?786E. *
REM#ROUTINE CALLED BY SYS(289€0)> *
RE PR ACNEA AN AN A A RN A N
1=229€0:T=0

RERD A

IF A=-1 THEN 4158

FOKE I.A:T=T+R

I=1+1

GOTO 4180

PRINT"IROUTINE S:" |

IF T=5859 THEN PRINT"MXENTERED O0.K.":60T0C 5000
PRINT"MMENTERED INCORRECTLY"

END

DATA72.152,72.,132.,72.,32.,0
DATAL112.16€6,92,1€4.91,136,177
DATASY.73.128,145.87,173,18
DATA3.145.94.136.1€,.242.24
DATAR1€5,87.1@5,40.133,87.,133
DATAS4.144.,4.2326.88.230.25
DATAR2682.202.221.,104.178.104 .168
DATAR104,9€.-1

REM

RE PR A NOK 4 AN A o N
REM¥DRAW A BORDER OF ANY SIZE.AMHY*

103

5320
5370
5340
5358
5360
Sare
5320
5290
5400
5410
Sa20
5430
5440
5459
5460
5470
5420
€000
6010
N2
6036
6240

104

REM#LOCATION, AMD ANY COLOUR, TOF#¥

REM¥LEFT CODRDIMATES ARE: *
REM# COLLUMN IH a2 *
REM3¥ LINE IN 28 *
REM# WIDTH IH 91 *
REM¥ HE IGHT IH a2 *
REM# COLOUR IS STORED IM 788&. #*
REM¥ROUTIME CALLED BY 3YS(230241 ¥

RE Mook gk b ik ok ool ok K
1=27024 :T=9

RERC A

IF A=~1 THEH 51820

POKE 1.A:T=T+A

I=I+1

GOTO 5128

PRINT"TROUTIHME &6:"

IF T=265S7 THEH FRINT"MBEHTERED O.K.":GOTOE0OH
PRINT"MSENTERED IHCORRECTLY"

EHD

DATA?Z2.152,72.128.72.32.0
DATRLI1Z,165,.87,133,.89,. 165,88
DATAL133.90.163.100.141 ,16.2
DATAR32.212.113.24.165.87.185
DATA41 ,133.87.133.89.,1£5.83
DATA10%.0.13%,88,133.90,1€6%
DATA191,141.16,2.32.229.113
DRTAZ24.165.89.101,91,133.87
DATAL128.87.165,90,105.0.133

CATASS . 169,103,141, 16,323,232
DATA239.113,165.89,133.37,.165
DATAS0.133,88.166.92.198 .87
DATR202.202,24,165,.87.1035.48
DATAIRZ2.87,165.88,10%5,.8,133
DATASS,.202.203,240,.169,99,141
DATALIE.3.22.212.113.104,176
DATR104.168.104,96,.164 .91 .16
DATAR? . 133.94.1€65.88,24.105
DATA212.133.95.172,16,3.145
DATABT.173.18.3,145.94.136
DATAZ08,.243,96.160,0.166 .92
DRTAZB2.202.173,16.3.145,87

DATAR24 . 165,87 .133.94.165.,88
CRTA1GS.212,133.95.173.18.3
DATA145.94.24,165,87.165.,.40
DATA132.87.165.88.105,0.133

DATASS . 202.208.219.96 .~1

REM

RE Mok iRk ok Sk Aok
REM¥ROUTIME TO PLACE THE CURSOR %
REM#AT A LOCATION ON THE SCREEH
REM¥WHOSE COORDIMATES ARE STORED *

DEMO

The loader on pp. 101-5 should be loaded and run once before
using this demo.

DESCRIPTION

This program is only intended as a demo of some of the Machine
Code routines included in the Display Management section. The
Code routines used are as follows:

CURSOR CONTROL-SYS (29216)

HORIZONTAL LINE - SYS (28800)

VERTICALLINE-SYS (28832)

BORDER-SYS (29024)

BLOCK DISPLAY —SYS (28896)

BLOCK REVERSE —SYS (28960)

PROGRAM STRUCTURE

The lines of interest in the program are as follows:

130-145 : Limitmemory and clear pointers.

214 : Setscreen and border colours.

215-245 . Usesthe Border routine to set up and display all the
necessary borders on the screen.

295-335 : Sets upthe vertical and horizontal bars.

400-405 : This uses the block reverse routine to display the
character inputline.

480-630 : These lines use the cursor control routine to set up

the text on the screen. Each item of text is held as
three elements, they are: column, line and text.

730-740 : This routine highlights the function currently
selected from the menu.

780-800 : This routine removes the highlighted function
when another is selected.

940-960 : This is the error message (record full), it is

displayed using the cursor control routine.
1040-1070 : Highlights the description and places the cursor in
the next available line awaiting an input.

1120-1140 . If the input is an up arrow then the program exits
the current section and moves to the next.
1180-1185 : Removes the highlight from the description.

1250-1300 : Reverse field to highlight the Quantity and place
cursor on the next available line awaiting input.

1340-1345 : Remove highlightfrom Quantity.

1410-1460 : Reverse field to highlight Cost and place cursor on

106

5052 REMEIN 8&7=LINE AND S8=COLUMN. *
SPEE REM¥ROUTIME CALLED BY SYS(2I21E0%
66876 FE Mk Aok R AR AR AR
6080 [=29216:7=0

c@se READ A

61908 1F A=-1 THEN €148

€118 POKE I.A:T=T+A

€120 I=I1+1

€139 GOTOD ease

f PRIMTYTROQUTINE 7:%
gigﬁ IF #=S €% THEN PRINT"AMEMTERED O0.K.":GOTO £240@

€168 PRINT"MEEMTERED IMCORRECTLY"
€17@ END

€188 DRTAVZ2,152.72,138.72.169,19
€150 DATR22.22,231,1€65.,87,248.3
€268 DRTRIES.17.32.22.231.198.87
€216 DATR2B2.247.1€5.88.240.9,163
€228 DRTA29.32.22.2231.198,88.268
6230 DATA247.104,178.104.168.184.96.-1
6243 POKES!.@:FPOKES2.112

6250 POKESS,B8:POKESE.112:CLR:NEW
RERDY.

105

1500-1505
1560-1570
1610-1620
1660-1665
1720-1750

1790-1810
1880-1900
1940-1945
2000-2010
2060-2170
2210-2215
2260-2270

2370-2380
2240-2475

2520-2525

the next available line awaiting input.

: Remove highlight from Cost.

: Reversefield to highlight Total.

: Place cursor at position to display total.

. Remove highlight from total.

: Moves the cursor to the location for prompt and

displays prompt.

: Uses the Horizontal Bar routine to delete the

prompt.

: Calculates the highlights the grand total. The

cursor routine is called to display the total.

: Remove highlight from total.
. Reverseto highlight name and address.
: Move cursor to the first position on the name and

address section.

: Remove highlight from name and address.

: Remove highlight from update and return to select.
. Reverseto highlight delete function.

: Using the Reverse block routine, delete blocks of

text from the screen by replacing them with
spaces.

: Using horizontal line delete lines, by replacing

them with a space character.

When you are entering the address, finish each line with a comma
and then press the return key. To exit the address mode enter a full
stop and press the return key.

107

16 REM ik bk gl bk Ao
1S REM %DEMONSTRATION PROGRAM TO SHOW *

20 REM #SOME OF THE APPLICATIONS FOR

*

25 REM %THE FOLLOWING ROUTINES IN THE
38 REM * GRAPHIS PACKAGE:
35 REM ¥CURSOR COMHTROL - SYS(232182

45 REM ¥VERTICAL LINE - SYS(28832)
S50 REM * BORDERS - SYS(29824>

*
»*
*
40 REM *HORIZONTAL LINE- SYS(2&8ee) *
*
*
*

55 REM *BLOCK DISPLAY -~ SYS(2883&)
68 REM *BLOCK REVERSE -~ SYS(283600 *
&5 REM *THIS PROGRAM IS JUST PART OF A%

REM ¥HYFOTHETICAL APPLICATION AND *

75 REM *IS ONLY INTENDED AS A DEMO L]

138
140
145
150
1608
178
138
19@
209
218
214
218
220
225
preclc)
235
240
245
25a
259
279
275
zee
290
2995
zeo
3es
z16
315
3ze
325
3ze
335
340
2509
3508

108

REM skmeraors bk kmon ol sk ok ki

POKESS ,9:POKESE.112

REM % LIMIT TOP OF MEMORY

POKES1 .0 :POKES2,112:CLR
T=@:6T=0:L=4:LA=18

PRINT"O"

REM

REM

REM % SET UP BORDERS

REM

REM

POKES3221 .12 :POKES3280.2

C=1

POKESS .3 :POKESQ, @ :POKESL .38 :POKESZ . 15
POKE725,C :SYS(29024)

POKESS .3 :POKES®,15:POKESL . 18 :FPOKESZ, 10
POKETSE,C18YS5(29824)

POKEESS .20 :FOKESS, 15 :POKESL , 18 :POKESZ. 18
POKE?S86 .C :1SYS(23624)

REM

REM :

REM % SET UP HORIZONTARL AND

REM * VERTICAL BARS

REM

REM

C=1

FOKESS .20 :FOKESG . 2:POKES1 . 9:POKE?S4 .84
POKE7TSS,C :SYS(28832)

POKESS ,25 :POKES® , 2 :POKESL . 9:POKETE4 .84
POKE785 ,C :SYS(28832)

POKESS .21 :FOKES®,2:POKES] ,9:POKETE4 .84
POKETEES . C1SYS(28832)

POKESS .26 :POKESS . 11 :POKESL .7 :POKETE4 .78
FOKETEE ,C 1 SYS (288000

REM

REM

REM * DISPLAY CHRRACTER TO INDICATE

37e
280
398
406
485
4168
428
438
431
425
4490
445
458
460
47

426
498
500
S1e
526
530
540
S50
560
570
580
596
€oa
€l@
€20
€20
540
E56
cee
5ES
€70
&8
65@
7R0
rie
715
720
gcls
735
740
750
7ea
765
770
720
7=

REM % AODRESS INPUT LIMITS

REM

REM
POKESS.2:FPOKESR. 18:FPOKES] . 16 :FOKES2,5
POKE?Y24, 180 :POKETE6.,C:SYS(2889€)

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
DATA4 .2 .DESCRIPTION
DRTR21.2.0TY
DATAZE .2 .C0ST
DARATAR22.2.TOTAL
DATAR2S5,12.TOTAL
DATA3.,16 .NAME & ADCDRESS
DARTAZ23.16.FUNCTION - 7
DATA23.18.,1 - UPDARTE
DATRZ23.26.2 - DELETE
DRATR23.22.8 - EXIT

SET UP SCREEN TEXT USING
CURSOR

CONTROL ROUTIME ERCH ITEM OF

TEXT IS HELD RS THREE ELEMENTS

IN A DATA STATEMENT - THEY ARE

COLUMN #, LINE #. RAND TEXT

LE X X X 3

FORG=1TO18

READA :POKESS.A: REM % COLUMM #
REARDA:FOKES? .A: REM % LINE #
SYS(Es2isd: REM * MOVE CURSOR
RERDAR$:PRINT"2"A$: REM % DISPLAY TEXT
NEXTQ

REM

REM

REM % SELECT AND RYS FEILD RCTIVE

REM % SCREEN FUNMCTIOM FROM MENU

REM % EMCLOSED IN BOTTOM LEFT EORDER
REM

REM

REM

REM % R%S TO HIGHLIGHT WORD FLMNCTION
REM * IN MENU

REM

POKES9 .23 :POKES® ., 16 :POKESL . 12:POKES2., 1

POKE?7SE .2 :SYS(28968)

GETA%: IFA$=""THEN748

REM

REM % RVS TO REMOVE HIGHLIGHT FROM
REM * TFUNCTION”

REM
FPOKESS,22:POKESS ., 16 :FOKESRL . 12:FOKES2, 1

POKE?7SE, 1 :5YS(28960)>

109

790
200
g1
a2
j=3c]c)
840

A=VALCAS) sOHAGOTOSZ8 , 2308, 2639
50T0E40

REM

REM

REM ¥“UPDATE FUNCTION DEMO OHLY
REM

828 BEN

870
875
&30
a9n
895
a0
910
920
925
930
240
950
260
7@
980
290
1000
1910
1915
1020
1038
104@
1045
1p5@
1960
1270
1030
1890
1895
11e@
1105
1110
1120
1125
1126
1130
1148
1158
1160
1165
1178
1180
1185

10

REM % RVS TO HIGHLIGHT ‘UFDRATE”
REM ¥ IN MENU
REM
POKES9 .23 :FOKES9, 18:POKES1 ., 181POKES2. 1
POKE7S& . 2:SYS(28260)

IFL<1BTHEN1048
REM

REM % CURSOR CONTROL TO DISFLAY
REM ¥ ERRCOR MESSAGE
FEM
POKES? .12 :FOKESS . 2:SYS(29216)
PRINT" @SECORD FULLE"
GOoTO01880
REM
REM % IMPUT DESCRIPTIOM
REM

REM

REM % HIGHLIGHT *DESCRIPTION” RAMND
REM * PUT CURSOR TO

REM % DISFLAY INPUT ON LINE “L”.
REM

FOKESS . 4:FOKESQ, 2 sPOKES]L .11 :POKES2,
FOKE?SE,2:8YS(28360)

FOKES? .L :POKESS .4 1 SYS(29216)

D‘g "e

GETAS$ 1 IFA$=""THEN1Q7O

REM

REM % IF INFUT IS “t” THEM ABORT TO
REM % HEXT SECTION AND

REM % REMOVE HIGHLIGHT FROM

REM * ’DESCRIPTION”

REM

IFASCO " T THEN1 130

POKESS .4 :FPOKESS, 2:FOKES1 , 11 :POKESZ . 1
POKETSE, 1 :SvYS(2896@) :60T02000
De=0¢+A$: IFAS=CHR$ (13> THEHGQTO1180
PRINT"R"A$:1GOTO1070

REM

REM % REMOVE HIGHLIGHT RYS FROM

REM % ’DESCRIPTION”

REM

FOKERD , 4 1POKESS , 2 :FOKES1 , 11 1FOKESZ, §
POKE?36,1 :1SYS(28268)

1199
1208
121@
1226
1225
1230
1240
1250
1255
1260
1270
1280
1292
1306
1310
1320
1325
1330
1340
1245
1250
1360
1z70
1280
1285
1390
1409
1410
1415
142@
1430
1444
1450
1460
147a
140
1485
1490
1500
1505
1518
1520
1520
1540
1550
1568
1565
1570
1520
1590
1595

REM

REM % INPUT QUANTITY

REM

REM ¥ RYWS FEILD TO HIGHLIGHT *QTY’
REM #* AND MOVE CURSOR TO)
REM % DISPLAY INFUT OM LINE “L”.
REM

POKESR2 .21 :POKES® . 2:FOKE?1 . 31POKES2, 1
FOKE?VS6 .2:5YS(28968)

FOKES? L :POKESS,21 1SYS(29216)

Q$= "o

GETA$: IFA$=""THEN]1280

QF=0$+A% : IFA$=CHR$ (13> THENGOTO134@
FRIMT"W"A%: 1650701280

REM

REM % REMOVE RVYS HIGHLIGHT FROM
REM * ‘RTY”

REM

FOKES2 .21 :POKES . 2 :POKES1 . 31POKES2, 1
POKE7S6. 1 15YS(28969)

REM

REM % INPUT COST

REM

REM % RYS TO HIGHLIGHT ’COST’ AND
REM % PUT CURSOR OM LIME “L*

REM % TO DISFLAY INPUT

REM

FOKEES , 26 :POKES0 , 2 1POKES1 . 4 1POKES2 . 1
POKE7S6 . 2 15YS(28260)

POKES7 . L tPOKESS, 26 1SYS(29216)

C’r_ "ne

GETA$: IFA$=""THEN1440

C$=C$+AS$ § IFA$=CHREC 13> THENGOTO 1500
PRINT"A"AS$ s 100T0O1440

REM

REM ¥ REMOVE RVYS HIGHLIGHT FROM
REM 7COsT”

REM

POKES9,2€ tPOKESQ . 2 :POKESL . 41POKES2, 1
POKEYS6. 1 :SYS5(28960>

REM

REM % CALCULATE AND OISPLAY TOTAL
REM

REM % RVS TO HIGHLIGHT ‘TOTAL’

REM .
POKER2,32:POKES0 . 2 :POKESL . 51POKES2, 1
POKETRE,2:8YS(28968)>
T=VAL(QE>HVALLCE) :GT=0T+T

REM

REM ¥ PUT CURSOR ON LINE “L” AT

REM * POSITON TO DISPLAY TOTAL

m

1608 REM
1616 FPOKEES?.L:POKESES,32:8Y5(2921€6>
1628 PRINT"A"T

16348 REM

1648 REM * REMOVE RYS HIGHLIGHT FROM
1645 REM * ZTOTAL”

1656 REM

1668 POKEES,32:POKESE®.2:1POKESL .5:FOKESZ. 1
1665 POKETSE.1:8YS(28366)

1678 REM

1686 REM % FPROMFT FOR ANOTHER EMTRY

1698 REM

1700 REM % MOVE CURSOR TO LOCATION FOR
1785 REM * FROMPT AND DISPLAY

1716 REM

1726 POKEST,13:POKESS.2:8YS(282163

1738 PRIWT"ZMMNOTHER ENTRY - ¥ OR NE"
1740 GETA$:IFA$=""THEN1740

1750 L=L+1

1766 REM

1770 REM % USE HORIZONTAL BAR OF SPACE
1775 REM * CHARS TO DELETE PROMPT

1786 REM

1790 POKESS.1:POKESS,13:POKES] ,22:POKE?84 .32
1795 POKE7SE,@:SYS(2880@)

1860 IFA$="N"THEN1&86

1218 GOTO986

1826 REM

1826 REM * CALCULATE GRAND TOTAL FOR ALL
1835 REM * ENMTRIES

1840 REM

1656 REM % RVS TO HIGHLIGHT “TOTAL” AND
1855 REM ¥ MOVE CURSOR TO

1866 REM * LOCATION TO DISPLAY GRAND

1865 REM * TOTA

1876 REM

1880 POKEES 2S5 :POKESE, 12:POKESL . S:POKESZ . 1
1225 POKETS6.2:SYS(285%6)

1898 POKEST.12:POKESS,32:5YSI26216)

1966 PRINT"G"GT :FORR=1TO166 :NEXTR

1916 REM

1926 REM * REMOVE RWS “HIGHLIGHT” FROM
1525 REM * TOTAL

1938 REM

194@ FOKESS,25:POKES®. 12:POKESL . 5:POKES2Z.1
1945 POKE?S6,1:8Y5(28968)

19568 REM

1966 REM #* INPUT NARME RHD ADODRESS
1878 REM

1920 REM % RYS HIGHLIGHT “HAME AND
1985 REM * *ADDRESS”

M2

19%@
2060
205
2816
282
2e3a
28325
2n4a
205a
2e60
2678
zeca
2098
2168
211a
2120
2120
2140
2156
2168
2176
21886
21%@
2195
2zea
2216
2215
2220
2220
2225
2248
2250
2268
2265
2z2va
2289
2296
2706
2318
2220
2230
2246
2358
2285
2366
2370
2375
2zea
2236
2406
2485

REM
POKESS.Z:POKESB. 1€ :POKERL . 14 :FOKES2. 1
POKETEE .2 :18Y5(28950)

LA=18g

REM

REM % MOYE CURSOR TO START OF NAME
REM * AND ADDRESES INPUT
REM * OH LINE “LR”

FEM

FOKES? .LA:POKESS, 2 :1SYS(29216)
GETA®: IFAS=""THEN207@G
IFA$="1"THENZ2Z10
IFA$=CHR$ (13 THEN2078
PRINT"3"R$: :ADS$=AD$+AS
IFAS$=", "THENLA=LA+1 :GOTOZ 146
IFARE=", "THENGOTOZ 160
GoTozere

IFLA>22THENLA=22

GOTO2B60

GETR$: IFA$=""THEM2150Q
IFASCCCHRECLE) THENZATA

REM

FEM % RYS TQ REMOVE HIGHLIGHT FROM
REM * “NRME AHD RADDRESS”

REM

FOKEES, 2:FOKES® . 16 :FOKESL . 14 :POKES2, |
POKETSS, 1 :SYS(2856@)

REM

REM % REMOVE HIGHLIGHT FROM FUNCTION
REM * “UPDATE”

REM % AMO RETURM TO FUNCTIOQMN SELECT
REM

POKESD, 23 :FOKES ., 1€ :POKESL , 16 :FOKESZ, |
FOKETEE ., 1 13YS(28960)

GoToc4@

FEM

REM

REM % DELETE RECORD FUMCTICON

REM

REM

D$= "e :Q’=ll " =C$=H " :HD$= Hh

REM

REM * RVS TO HIGHLIGHT "DELETE”’

REM * FUMCTION

REM

POKESS ., 23 :POKESE® . 20 1FOKESRL , 1@ 1 FOKESZ2, 1
POKETSE .2 :8Y32095@)
T=3:0T=0:L=4:LA=18

REM

REM % DELETE BLOCKS OF TEXT FROM

REM % SCREEM USING THE ROUTIME

13

2410 REM % TO FILL A SCREEN BLOCK WITH
2415 REM % SPECIFIED CHARACTER

2420 REM % - HERE A SPACE CHARACTER

2430 REM

2440 POKESS,2:POKESS.4:1POKEDL, 18:FOKES2.?
2445 POKETS4 .32 :1POKETS6,0:5YS(28896)

2458 FOKEES .21 :POKESS.4:POKESL . 4:1POKES2,7
2455 POKE?S4.32:POKE?S6,0:SYS(288962

2460 POKESS .26 :1POKESS.4:POKESL .4 :FOKES2.7
2465 POKETS4,32 :POKETSE,8:15YS(28896)0

5470 POKESES,32:POKESS .4 :1POKESL .6 :1POKES2.?
2475 POKE7S4,22:1POKETS6.01SY5(28096)

2488 REM

249@ REM % DELETE LINE USING HORIZONTAL
2495 REM % LIME DRAWING WITH

2=p@ REM % SPACE CHARARCTER

2510 REM

oE2G POKESS .32 :FOKESR, 121POKESL .5 1FOKE?84 .32
2525 FOKE?S6.0:5YS(28800)

2520 REM

2540 REM * DISPLAY CHARACTER BLOCK TO
2545 REM % GIVE AODRESS INPUT LIMITS
2550 REM

2560 POKESS.2:FOKES®, 181POKES] . 16 1POKES2.5
2565 POKETSS . 100 :POKETSS, 1 15YS(28896)
2570 REM

o580 REM % RVS TO REMOVE HIGHLIGHT FROM
2585 REM % °DELETE’ RHD

zsop REM % RETURM TO FUNCTION SELECT.
2600 REM

2616 FOKESS .23 :FOKES@, 20 :POKESL . 101POKES2 . 1
2615 POKE?63.1:SYS(28960)

2620 GOTOE48

2620 STOP

READY.

14

FINERESOLUTION PLOTTING

A great drawback in having a display only 40 characters wide and
25 lines deep is the poor definition achievable when displaying data
in graphical form. A limitation particularly apparent when trying to
display data as bar charts, either vertical or horizontal, on the
screen. Fortunately the character set on the Commodore 64 allows
this limitation to be overcome. By careful use of specific graphic
characters in both normal and reverse field a single character space
can be resolved into eight lines in either horizontal or vertical
directions. The resolution of a character space thus achieved can
take two forms, either a set of eight characters each having a
reverse field line of increasing width (from 1/8 character to 8/8 of a
character), or a set of characters each with a single thin line but
positioned in the 1/8 character increments.

The first of these forms can be used with normal reverse field
spaces to create bar charts with resolutions of one partin 320 in the
horizontal and 200 in the vertical. The second form is used where a
thin, fine incremented line is required, such as the example
program in this section, plotting a graph of a curve. For each of
these two forms of fine resolution plotting there are two sets of
characters, one set for vertical and the other for horizontal plotting.

HORIZONTAL BAR LEFT TO RIGHT

This routine draws a horizontal bar of reverse field spaces from left
to right in fine resolution. The left hand co-ordinates are
determined by two variables, column number and line number.
The length of the bar is set by a variable and has a resolution of 1 in
135, the minimum length of the bar is 0 and the maximum is 135,
these values are the number of 1/8ths of a normal character space.
Attempts to draw a bar longer than 135 will give an erroneous
display. The variable locations required by the routine are as
follows:

89...column number of start of fine resolution bar plot {left end).
90...line number of start of fine resolution plot.

91...length of fine resolution bar plotin 1/8 ths of a character space.
786... colour of bar,

The routine is called by SYS(29258).

15

HORIZONTAL BARRIGHT TO LEFT

This routine draws a horizontal bar of reverse field spaces from
right to left in fine resolution. The right hand co-ordinates are
determined by two variables, column number and line number.
The length of the bar is set by a variable and has a resolution of 1in
135, the minimum length of the bar is 0 and the maximum is 135,
these values are the number of 1/8ths of a normal character space.
Attempts to draw a bar longer than 135 will give an erroneous
display. The variable locations required by the routine are as
follows:

89 ... column number of start of fine resolution bar plot (rightend).
90 ... line number of start of fine resolution piot.

91 ... length of fine resolution bar plot in 1/8 ths of a character
space.

786... colour of bar.

The routine is called by SYS(29328).

VERTICAL BARBOTTOMTO TOP

This routine draws a vertical bar of reverse field spaces from
bottom to top in fine resolution. The bottom co-ordinates are
determined by two variables, column number and line number.
The length of the bar is set by a variable and has a resolution of 1in
135, the minimum length of the bar is 0 and the maximum is 135,
these values are the number of 1/8'ths of a normal character space.
Attempts to draw a bar longer than 135 will give an erroneous
display. The variable locations required by the routine are as
follows:

89d.j. column number of start of fine resolution bar plot (bottom
end)..

90... line number of start of fine resolution plot.

91 ... length of fine resolution bar plot in 1/8ths of a character
space.

786... colour of bar.

The routine is called by SYS(29408).

116

VERTICAL BAR TOP TO BOTTOM

This routine draws a vertical bar of reverse field spaces from top to
bottom in fine resolution. The top hand co-ordinates are
determined by two variables, column number and line number.
The length of the bar is set by a variable and has a resolution of 1 in
135, the minimum length of the bar is 0 and the maximum is 135,
these values are the number of 1/8'ths of a normal character space.
Attempts to draw a bar longer than 135 will give an erroneous
display. The variable locations required by the routine are as
follows:

89... column number of start of fine resolution bar plot (top end).
90... line number of start of fine resolution plot.

91...length of fine resolution bar plot in 1/8 ths of a character space.
786... colour of bar.

The routine is called by SYS(29503).

HORIZONTAL LINE LEFT TO RIGHT

This routine draws a bar of space characters from left to right
terminated by a fine resolution vertical line one eighth of a
character wide. The left hand co-ordinates are determined by two
variables, column number and line number, The length of the bar is
set by a variable and has a resolution of 1 in 135, the minimum
length of the bar is 0 and the maximum is 135, these values are the
number of 1/8 ths of a normal character space. Attempts to draw a
bar longer than 135 will give an erroneous display. The variable
locations required by the routine are as follows:

89... column number of start of fine resolution bar plot (left end).
90...line number of start of fine resolution plot.

91 ... length of fine resolution bar plot in 1/8ths of a character
space.

786... colourof bar.

The routine is called by SYS(29600).

17

HORIZONTAL LINE RIGHT TO LEFT

This routine draws a bar of space characters from right to left
terminated by a fine resolution vertical line one eighth of a
character wide. The right hand co-ordinates are determined by two
variables, column number and line number. The length of the bar is
set by a variable and has a resolution of 1 in 135, the minimum
length of the bar is 0 and the maximum is 135, these values are the
number of 1/8ths of a normal character space. Attempts to draw a
bar longer than 135 will give an erroneous display. The variable
locations required by the routine are as follows:

89 ... column number of start of fine resolution bar plot (right end).
90...line number of start of fine resolution plot.

91 ... length of fine resolution bar plot in 1/8ths of a character
space.

786... colour of bar.

The routine is called by SYS(29680).

VERTICAL LINE TOP TO BOTTOM

This routine draws a bar of space characters from left to right
terminated by a fine resolution horizontal line one eighth of a
character wide. The top co-ordinates are determined by two
variables, column number and line number. The length of the bar is
set by a variable and has a resolution of 1 in 135, the minimum
length of the bar is 0 and the maximum is 135, these values are the
‘number of 1/8 ths of a normal character space. Attempts to draw a
bar longer than 135 will give an erroneous display. The variable
locations required by the routine are as follows:

89 ... column number of start of fine resolution bar plot {top end).
90... line number of start of fine resolution plot.

91 ... length of fine resolution bar plot in 1/8ths of a character
space.

786...colour of bar.

The routine is called by SYS(29856).

18

VERTICAL LINEBOTTOM TO TOP

This routine draws a bar of space characters from bottom to top
terminated by a fine resolution horizontal line one eighth of a
character wide. The bottom co-ordinates are determined by two
variables, column number and line number. The length of the bar is
set by a variable and has a resolution of 1 in 135, the minimum
length of the bar is 0 and the maximum is 135, these values are the
number of 1/8 ths of a normal character space. Attempts to draw a
bar longer than 135 will give an erroneous display. The variable
locations required by the routine are as follows:

89 ... column number of start of fine resolution bar plot (bottom
end).

90 ... line number of start of fine resolution plot.

91...length of fine resolution bar plot in 1/8 ths of a character space.
786... colour of bar.

The routine is called by SYS(29760).

19

18 REM
20 REM sokimioiiolop ool o

30 REM %ROUTIHME TO CALCULATE SCREEN *

46 REM #RODRESS FROM VALUES FOR *
58 REM * COLUMN IN 89 *
€6 REM * LIMHE IN] *

7@ REM ¥ADDRESS RETURNED IN 1 AMND 92%
26 REM #*THIS KOUTIME IS ONLY CALLED *
S0 REM ¥8Y OTHER ROUTIHES IM THE *
108 REM&PACKAGE ,DO NOT USE BY ITSELF.*
118 REM#ERROR FLAG IN LOCATION 785 *
120 REFHORKEEARAANIRR R AR R K
130 I=28572:T=0

140 READ A

150 IF A=-1 THEM 198

1680 T=T+A:PUKEI.A

176 I=I+1

186 GOTC 149

190 PRINT"TROUTINE 11"

268 IF T=11973 THEW PRINT"MEENMTERED 0.K":1G0TO 166a
2i@ PRIMT"MINEMTERED IHCORRECTLY"

228 END

230 DATR169.06,141.17.3,165.89

240 DATR48,66.201,48.176,.74.165

250 DATASG.48.82,201.25.176,50

260 DATA169.0.133,87,133,88,133

276 DATAS4,133.95.165.96,240.105

286 DATA1708.24,165.87.,105,40.133

290 DATAS?.144.2.238.88,262,208

300 DATA242.24.165.87,101,89.133

319 DATAS?.165.686.105.4,123.688

320 DATA24.165,87.133.94.165.88

230 DATA165,212,133.95,96,169.1

240 DATA141,17.3,169,0.133,.89

350 DATA?E.7.112,169.2.141.,17

360 DATA3.169.39,133.89,76.7

276 DATA112.1€9.3.141.17.3.163

380 DATRB.133.98.76.7.112,163

356 DATAR4.141.17,3,169,24,133

460 DATAR90.75.7.112.-1

1000 REM

1G1O REMARAREERIRAIINRIRIAN RN ANAON BN
1920 REMEDRAW A BORDER OF ANY SIZE.AHY#
1038 REMALOCATION, AMD ANY COLOLR. TOP¥

1648 REM¥LEFT COORDINATES ARE: *
1059 REM¥ COLUMH IN 89 *
1060 REM¥ LIME IN S0 *
1070 REM¥ WIDTH I 91 *
19086 REM#* HEIGHT IM 92 *
1099 REM¥ COLOLR 1S STORED IN 786. *
1100 REMAROUTINE CALLED BY SYS(295824> %

120

1118
1120
113@
1140
1158
1160
1170
liel
1198
1286
1210

1220

1226
1240
125a
1250
127e
1280
1296
1200
iz1@
1328
1328
1348
135a
1380
1378
138@
1296
1408
1410
1426
1430
1440
i45e
1460
1470
1480
2606
2eie
2020
203
2048
2056
2P6.
2e7ve
2080
2096
2160
2118
2126

REMsckfk g pinopior s kbbb ek

I1=29024 : T=a

READ A

IF A=-1 THEM11E8
POKE I.R:T=T+R
I=I+1

GOTO1126
PRINT"TROUTINE 2:*

IF T=20357 THEN PRINT"XMENTERED 0.K." :G0TO2AGE

PRINT"EMENTERED INCORRECTLY™
END
DATA72,152,72.,138,72.32.@
DATA112.165.87.1332.89.1€5.88
DATAR132.90.169.100.141 16,3
DATAZ22.212.113.24.165.87.1085
DATAR41.133.87,123,89,165.88
OATA10S,8.132.88.133.90,1€9
DATA1681.141.1€.3.32.239.113
DATAZ24.165.89.1681.91.133.87
DRTA15E€.87.165.90.185.8,133
DATASE . 169,103,141 .16.5,.32
DATA2392.113.165.83.132.87.165
DATASG.,133.88,1€6€.92,198.57
DATAR292.202.24,1€5,87.1085,40
DATA13E2.87.1€5.88.105.0,133
DATRE2.,202.288.248.169.99.141
DATR1E6,3.32.212.113.1084.178
DATR184.1€2,104.96,164 .91 ,155
DATAEY . 13%.94.1€65.88.24.105
DARTA212.133.95,172.16.3.145
DATASY . 173.16,3,145.94.136
DATR208.243,96, 166,08, 166,82
DATAZ202.262.173.1€6.32,145 .87
DATA24.1€65.87.133.94,.165.88
DATRIOS.212.183.95,173,18.3
DATA145.94,24,165,.87,185.4@
CATAL122.87.,1€5.88,105.6,133
DATA2E.202.202.219.96.~1

REM

REEMcb b RN R A RN R o
REM#ROUTINE TO FLACE THE CURSOR %
REM#RT A LOCATIOM ON THE SCREEN
REM¥MHOSE COORDIMATES ARE STORED *

REM#IN 87=LINE AND S8=COLUMM.

REM¥ROUTINE CALLED BY SYS(2921&0#
RE Mkt b4 b0 NOK R A b e e

I=23216:T=8
RERD A

IF A=-1 THEM2148
POKE I.A:T=T+A
I=1+1

121

21z@
2148
2156
21€0
21i7a
zige
2199
2208
2210
2226
2239
Sena
3810
2820
seze
3049
3850
3868
3670
3086
2098
2100
2lie
3129
3130
140
3150
3160
3176
31e9
3196
3200
sz21ie
3220
3230
2240
2256
32€0
276
4080
418
48208
4638
4044
465a
40860
4876
48208
4030
4108
4110

122

GOTOZBSa

PRINT"IROUTIHE 3:"

1IF T=S162 THEN PRINT"EEEMTERED 0.K." :GOT0OZ008
PRINT"MMEMTERED INCORRECTLY"

END

DATA?2.152.72.138.72,1€9.19
DATA32.22.231,165,87.,.248.9
DATALE69.17.32.22.231.198,87
DATAZ2PS.247.165.88.248.8.169
DATR29.32,22.231.19¢,88.208
DATR247.104.178.104.168.104 .96, -1

REM

RE Mook sl b iRk b Aok

REM*DRRM HORIZONTAL BAR - LEFT TO¥
REM#*RIGHT. RESOLUTION 135 X 25. *
REM¥COLUMN # IN 89, LINE # IN 5S0.%
REM#*LENGTH IN 91. COLOUR IN 7E6%
REM#ROUTINE CALLED BY SYS(232I8> *

RE Mok eieb don ik il Aor i kb R e
1=29258:T=0

READ A

IF A==-1 THEM2140

FOKE I.R:T=T+A

I=1+1

GOTO3058

PRINT"ROUTINE 4:"

IF T=7891 THEN PRINT"MEENTERED 0.K. " :G0TO4060
FRINT"MEEMTERED INCORRECTLY"

END

DRTA?2.152.72.138,72.,32.0
DRTR112,.166.0.165.91.,261.8

DATR48,27 .232.8.133.91.169
DATA1EG,145,87,173.18.3.145

DATAS4 .24.238.87,230.94,144

OATA4 .236.68.228.95.76,84
DATA114.178.189,134.114.145,87
DATAL7S,1€.53.145.94,104.176
DATA104.168.104,96.32,1081.116

DATA117 .97 .246,234.231.1€66, -1

REM

FE MR R R NANOR R AOK R N

REM#DRAM HORIZONTAL BAR - RIGHT %

REM#TC LEFT. RESOLUTION 135 X 25.%
REM#COLUMH # IN 89,
REM¥L INE # IN 90,
REM*LENGTH IN 31,
REM#COLOUR IN 78€.
REM®ROUTINE CALLED BY SYS(29328> *
RE MRk R AR AN A AN AN A AR
1=29328:T=0

READ H

*x % ¥ ¥

4120
4130
414@
4150
4168
4170
418@
4150
4200
4z1@
4220
423a
4249
4250
4260
4270
4280
429m
5020
Se10
5020
Sz
5040
Sese
S060
5670
5050
5090
S100
s11@
5120
5136
5148
5156
5160
5170
5186
5150

5Z10
5220
».IA."’@
240
5258
S2En
K7
52386
S25e
SZ00
S318
5860

IF A=-1 THEHM41&8
POKE I.A:T=T+R
I=1+1

GOTO4118
PRINT"IROUTIHE S:*

IF T=8835 THEM PRINT"MMENTERED 0.K.":G0TOS656

PRINT"MEEMTERED IMCORRECTLY™
END

DATAT2.152,72.132.72.32.
DATAL1Z.160,.8.165.91.201 .8

DATR48 .27 .233.8.133.91, 159
DATRIEE, 145.87,172.18.5, 145
DATAS4.56.198,87.198.94.176
DATA4,198,.8€,196.95.76.154
DATA114.178.189.204.114,145.87
DATA173.18.3.145.94,164. 170
DRTA104,166,104.96.32.1083.106
DATA11E,225,245.244.229,1608. 1

REM

REMMAES kiR R
REM¥DRAW YERTICAL BAR - BOTTOM TO#
REM#TOF. RESOLUTION 135 X 44,
REMECOLUMN # IN 89,

REMELINE # IN 5@,
REM#LENGTH IN 91,
REM¥COLOUR IN 786,
REM¥ROUTIMNE CALLED BY SYSC29408)> *
RE MAR SRR AR N R
1=29402:T=0

READ A

IF A=-1 THEHS5160

POKE 1.A:T=T+A

I=I+1

GOTOS118

PRINT"ZROUTINE 6:"

LR R X N

IF T=9621 THEW PRINT"MMENTERED 0.K.":60TO&06Q@

PRIMT"MEEMTERED IMCORRECTLY"

END
89TH72 15” ’2'139.?2.32.9
ATRI13.166.6,185,91.201 .8

DATR43.37 .233.8,133,91,169
DRATALIE®.145.87.173.18.3.145
DATASY,24.155.87,.233.329.133
DATASP, 133,.94.165.88.222.6
DRTH1?3 88.24, 1@% 212 123,95
DRTRIES .88 .20S. 176,189,385
DATA115,145.87. 1?3 18.2.145
DATAS4,104.176.104. 168,164 .96
DATAZ2.160.111.121.98.248.247
OATAR227.1€8.8,-1

REM

123

€918
6920
6026
6240
6250
6050
€avs
€32
ca9a
5190
€110
6128
€120
5140
€156
6160
617a
€186
6190
£200
€210
€220
6228
6244
6258
€268
€270
5220
6290
6200
€210
vag
7810
7oze
7oz
7940
7eta
7960
7070
vesa
7O20
7109
vi10
7120
7120
7140
7156
7168
7172
7iea
vioa

124

REM#LENGTH IH 91,

REMuokskmbioksokkoiiiorooriiofko
REM#DRAN VERTICAL BAR - TOP TO
REM#BOTTOM. RESOLUTION 135 X 28,
REM#¥COLLUMN # IN 89.

REM#LIMHE # IN 20,

[E R B B R J

REM#COLOUR IN 786.
REM¥ROUTINE CALLED BY SYS(223583)> *

-REM#R R ENaookpioRook RN

1=29503:T=0

READ A

IF A=-1 THEMNE160

POKE 1.A:T=T+A

I=I+1

GOTOEL LD

PRIMT"JROUTINE 7:"

IF T=£%93 THEM PRINT"MMENTERED 0. K. " 160TO7800
PRINT"MNEMTERED INCORRECTLY"

EHD

DRTA72.152,72.138.72,32.9
DATA112.160.0,165.91.2061.8
DRTA48.37,233,8,133,91,169
DATAR1E60.145,87,173.18.3.145

DATAS4 .24 .165,87.105,40.133

DATAS? , 133,94 .165,88,105.0
DATA133.88.24,105,212.133.95
DATALES.68.208.213,170,189.133
DATA115.145,.87,173.18.3.145

DATAS4 .104,170.104,168.104 .96
DATAS2.99.119.120.226,249,239
DATA228.169,0,-1

FEM

FE MR R NORAAORNCR AR RN R K
REM¥DRAM HORIZONTAL BAR - LEFT TOX
REMERIGHT OF SPACES TERMINATED IH¥
REM#¥A THINM LIME. RESOLUTION
REME 135 X 25.
REM#COLLMN # IN 8S.
REM#*L INE # IN 98,
REM#LEMGTH IN 91,
REM#COLOUR IN 786.
REM#ROLTINE CALLED BY SYS(29600> %

RE Mk A NN ORI NOR RO AN
1=22608:T=0

READ A

IF A=-1 THEN7180@

FOKE I.R:T=T+A

1=1+1

GOTQ7130

FRIMT"IROUTIHE 83"

IF T=7251 THEN PRINT"MMEWTERED 0.K. " 160702009

E X X X R X 1

vzea
721P
7220
vaza
7248
7258
rz6e
7270
280
7296
r30g
7aia
8006
go1a
822a
ea3e
8049
£05a
8060
=lorg]
2088
t=lsiol)
2100
€110
2120
€130
8148
£158e
8159
81786
c1ea
€158
s200
gz1a
G229
8230
8240
e25e
8260
8278
2280
ezse
&200
e21a
S99
s91a
8020
seza
9048
sesa
S0

PRINT"XPENTERED INCORRECTLY"
END

DATA72.152,72.132.72.32.0
DATAR112.160.6,1€65,91,261,7
DATAR48.27.233,7.132.91,169
DATAS2.145.67.172,18.3.145
DATAS4 .24 .236.87.2360.,94, 144
DATA4.230.88.238,.95,76,178
DATAR11S5.170.189.220.115.145.87
DATAR1732,.18,3,145.94.164,170

DRTA184.168.184,9¢6,181,24,71
DATAREE.72.89.163.32.32,~1

REM

REPBES bbb b b b bbb Sk doro bbbk
REM#DRAK HORIZONTAL BRAR ~ RIGHT
REM®TO LEFT OF SPACES TERMINATECL
REM¥IM A THIN LINE. RESOLUTION
REM¥135 X 25,

REM¥COLUMM # IN 89,

REM®L INE # IN Sa,

REM¥LEMGTH IN 91,

REM*COLQUR IN 7g2€.
FEM¥ROUTIMNE CALLED BY SYS(23690)> %

FEMIRAR AR A A AR NN AN A
I=29683:T=0

READ A

IF A=-1 THEMS1£0

POKE I,A:T=T+A

I=1+1

GOTOg130

PRINT"ROUTIME 9:

IF T=7@82 THEN PRINT"MMENTERED 0.K.":GOTOS0G0
PRINT"MEENTERED INCORRECTLY"

END

DRTA72.152.72.122,72.32.0
DATR112,160.8,165,91.201 .7
DATAR48.27.223.7.132.51.,169
DATAS2.145.87.173.18.3, 145
DATAS4.55.198.87.192.94,17€

DATA4. 198,28, 198,95, 76.250
DRTA115.176.129.44,.116,145.87
DATARI?3.18.2.145,94,164.170
DATAR1G4.168.1604,.96,163.89.,72
DRTREE.71.,84,181,32,32. -1

REM

REM#RA 0 A b bbb o R bk
REM¥DRAW YERTICAL BAR - BOTTOM TO*

REM*TOP OF SPACES TERMIMATED IN A%
REM¥THIM LINE.RESOLUTION 135 X <0%
REM#COLUMH # IN 29, ¥

REM¥L IHE # IN S8, *

LR X B X E

125

e

S87a
202a
29928
2108
2118
9128
13a
148
8158
91¢€9
9178
o186
219
s2a8
22109
2224
2230
s242
8259
2R
927
9220

2298

a20a

93109

azza

1ee9
19916
198206
1eeze
19348
18052
19250
18670
19220
18694
19108
1811a
19120
18126
18140
1015
10168
18170
1912aA
10126
10260
i8z1e
18220
16226
18248

126

REM#*LEMGTH IN 91, *
REM¥COLOUR IH 78€. %
REM#ROUTIME CALLED BY SYS(297EB)> *

RE Mk iktbiionk ok s ks ook ek ok
1=297€0:T=06

RERD A

IF R=-1 THEHS179

POKE I.A:T=T+A

I=I+1

GOTO9128

FRIMT"TROUTINE 12:"

IF T=£387 THEM PRINT"MFEMTERED D.K.":60T010600
FRINT"XREMTERED INHCORRECTLY"

EHD

DATA72.152.72.132.72.32.0
CDATA112.166,6,1€65,91.201.8
DRTA42,.37,233.8,133,91.169
DATAZ2.145.67.173,18.3. 145
DATA24 ,24 165 .87 ,223,39,133

DRTASY . 133.94,1€5,88,233,0
DATA132,88.24.185.212.133.95
DATALES . 88,298.213,170.189.134
DATA116.145,.87.172.18,3.145
DATAS4.104.170,104.162,104 .96
DATAR199.82.70.64,67.68.69
DATAZ9,.22.a.-1

REM

RE P e el bl bl Al sde e e bt

REM%ORAW YERTICAL BAR - TOP TO
REM#BOTTOM OF SPACES TERMINATED
REM¥IN A THIN LINE. RESOLUTIOMN
REM¥ 135 X 40.

REM¥COLUMH # IM 39,

REM¥LINE # IN 26,

REM#LEHGTH IM 21,

L E R X XK B X K J

REM#COLOLIR IN 7&€&.

REM¥ROUTIMNE CALLED BY SYS(29856) ¥
REM$okddb iofk b Aokl il ptor ko ok
I=22356:T=0

READ A

IF A=-1 THEH16180

FOKE I,A:T=T+A

I=1+1

GOTO1E12a

FRINT"IROUTIHE 113"

IF T=g188 THEH FRIMT"¥REMTERED 0.K.":00T011600
FRIMNT“MEEHTERED INCORRECTLY"

END

DATAT2.152.72,1282,72,32.,0
DATAR112,.1€0.0.165,91.201.8
DATR42.37,233.,8,133.91.169

13256
19264
16273
168220
19220
18200
192106
19320
10338
11909
11014
11620
11928
110480
11459
1100
11070
11920
11099
11101
11118
11120
11138
1114
11159
111€0
i117e
11180
11199
11260
11210
11220
1123
11240
11254
11268
READY.

DATAR2.145,87.,.173.18,3. 145

DATAZ24 .24 .185,87,1685,40.133

DATASY . 123.94.1€65.88,105.0
DATA1332.88.24.105.212,133.95
DATA165,88.202,213,179,189.230
DATA116.145.87.173.18.,3, 143
DATAR24.164.170,104,168, 164,96
DATA®3.€3.68.67.,.64,70,82
DATA18@.32.32.8.~1

REM

REM

FRE 330 e bk b Rk o bkl b oo
REM¥DRAM A HORIZONTAL BAR OF AMY *
FREM$¥64 CHARACTER. CHARACTER STORED#
REM¥IN 724, COLUMN START IN 89, *
REM#LIHE START IN 98, LENGTH OF %
REM¥LIME IM S91. COLOUR IM 78€. *
REM¥ROUTINE CALLED BY SYSC(z8800) *
PEMSc i fep e e g niebion 8 bkl Nl el
I=28806:T=0

READ A

IF AR=-1 THEH11160

POKE 1.R:T=T+A

I=I+1

507011110

PRIMT"TROUTIHE 12:"

IF T=2095 THEM FRINT"MXWEMTERED Q.K"160T0112%6@

FREINT"MMENTERED INCORRECTLY"
EHD

DATAP2.152.72.1238.72.32.0
DATAL112.164.91.172,16.3.145%
DATAST.173.18.3,145,24,126
DATAZOE . 243.1604.170,104,1689, 104
DATR2E .1

POKES1 .Q:POKES2.,112

POKESS .0 :POKES6,1121CLR tMEW

127

FINE RESOLUTION EMULATOR

The loader on pp. 120-7 should be loaded and run once before
using this program.

DESCRIPTION

This program emulates the display of an analog edge meter. To
move the needle use the 4 and 6 keys respectively. The program
calls the following Display Management routines:

CURSOR CONTROL -SYS (29216)
FINE RES HORIZONTAL—-SY'S (29600)
BORDER-SYS (29024)

HORIZONTAL LINE - SYS (28800)

PROGRAM STRUCTURE

The following is a description of lines of particular interest in the
Basic program:

120-135 : Limittop of memory andclear pointers.

190-260 : Uses the cursor control routine to display the text.

320-345 : Draws a border around the meter display.

370-430 . Test for key press and if legal key press, move the
meter needle in the correct direction.

460-461 : Erasesthe previous meter needle display.

470-471 : Displays the new meter needle position.

128

135
140
145
15a
151
154
155
168
17e
175
120
1e3
185
138
187
1%6
2e0
218
226
230
24a
256
2ca
278
286
285
29a
z2e
3es
Z40
245
bt
354
258

REM sesksiob sk leoh s ek Mol e AR Ak M
REM #THIS PRG EMULATES THE DISPLAY
REM %OF AM ANAOLG EDGE METER, USE %

REM % HORIZONTAL
REM ¥ SYS(29624) - BORDER
REM¥ SYS(23808> - HORIZOMTAL LIMNEN
R IR A A S N SN A

POKESS.B8:POKESE.112

REM LIMIT TOP OF MEMORY

POKE S51.0:POKES2,112:CLR

PRIMT"O"

FEM

REM *DRAW SCALE IN INCREMENTS OF 18
REM ¥ FINE RES LINES

FOKESZ281 .2

REM % FINE RES LIMES

REM % KEYS 4 & & *
REM %TO MOVE METER MEEDLE UP OR »*
REM 3% DN, *
REM #ROUTINE USES THE FOLLOWING *
REM * MACHINE CODE *
REM % ROUTINES : *
REM # S¥YS(29218> - CURSOR COMTROL *
REM ¥ SYS(2%668> - FIME-RES *

*

*

FORG=138T0& STEP -10

POKE 83.10:POKESS, 10 :POKES] . :POKE?SE . 1
SYS(z9€ena)

MEXTQ

REM

REM *DISFLAY TEXT USING CURSOR

REM * COMTROL

REM

DATA 6,11." 3ANALOG EDGE METER®"

DATR &.5.@

DATAR 8.28.130
DATA 26.7."&DIGITAL YALLUE OH METERR"
FORG=1TO4

FEADA :POKESY . A:READA :POKESS A1 SYSCR9216)
FERDAE :FRIMT"M"A$

NEXT®

REM

REM #DRAK BORDERS AROUND METER

REM % OISPLAY

REM

POKESS., 2:FOKESE , 9 :POKESL , 21 :POKES2, 4
POKE7R2E, 7 :5Y5(22024)

FOKESS, €:FOKESE .S 1POKES] , 25 :FOKES2, 9
POKE?TBE.7 :SYS(29624>

REM

REM ¥SEE WHICH KEY FRESSED (LOC 197>
REM % IF KEY = 4 (197=11)>

129

256 REM #*THEM DISFLAY VALUE DECRERSED.
357 REM * IF KEY = € (197=12

258 REM #THEH DISPLAY VALUE IMCRERSED.
360 REM

370 A=8

280 “=PEEK(197)

390 IFX=19THEM A=A+1:6G0T0420

450 IF¥=11THEN A=R-1:GJTQ420

418 GOTORE6

420 IFACATHEHA=D

430 IFR>130THENA=138

434 REM

435 REM ¥LOCATE CURSOR TO DISPLAY
436 REM % ODIGITAL ERUIVALEMT

427 REM

440 FPOKEQT .28 :FOKESES,30:SYS(29216)
458 PRIMT" TARRE" ;R

454 REM

455 REM %ERASE FREVIOUS METER HEEDLE
455 REM ¥ DISFPLAY

457 REM

466 FOKESS.10:POKESS. 11 :FOKESL , 18:FOKE?S4 .32
451 POKETS6,2:SYS(268200)

464 REM

465 REM $DISPFLAY HEW NEEODLE POSITION

466 REM

470 FOKESS,10:FOKES@, 11 1FOKESL . APOKE7RE. 1
471 SY3(22200)

420 GOTO3E0

READY .

130

GRAPH FUNCTION

The loader on pp. 120-7 should be loaded and run once before
using this program.

DESCRIPTION

This program plots the graph of a function and uses the following
routines from the Display Management section:

DRAW BORDER - SYS (29024)
CURSOR CONTROL-SYS (29216)
VERTICAL FINE RES LINE —(29760)

PROGRAM STRUCTURE

The following lines are of particular interest in the program:

90-105 : Limits the top of memory and clears the pointers.
210-215 : Draws a border around the display.

250-260 . Displays the text using the cursor control routine.
310-340 : Plots the graph of the function, ensuring that there

are no negative numbers and that the maximum
limitfor the values is 135,

131

19
20
235
39
40
45
Se
€a
€5

REM soksikoniopipomiikiion kb ionek
REM #USIMG FIHE RESOLUTIOMN LIMES *
FEM * THIS PROGRAM
REM ¥PLOTS THE GRAPH OF A FUNCTIOHM.*
REM ¥PROGRAM USES THE FOLLOWING
REM #MACHIMNE CODE ROUTIMES:

FEM % SYS(29624)> - DRAW EORDER
REM % SYS(29760> - VERTICAL
REM % FINE RES LINE

*

[X X X X J

70 REM % SYS(29216> — CURSOR CONTROL *
6 REM dolkpiop i Nkl k eor
90 POKESS,0:FOKESE.112

199 REM LIMIT TOP OF MEMORY

185 FOKES1 .0:POKES2,112:CLR

116 PRINT"O"

128 REM

138 REM %DRAW VERTICAL SCALE IN

135 REM %INCREMENTS OF 10 FIME RES LINES
146 REM

145 POKES3221.12

158 FORQ=110TORSTEF-10

168 POKESR,0:POKESS.2u POKES1 ,Q:POKEPSE ., 1
165 SYSC297Ved?

179 HEXTR

1868 REM

190 REM %DRAW EBORDER AROUND DISFLAY

260 REM

216 FOKESS.B8:FOKES®,6:FOKESL ,38:POKES2, 16
215 POKE7S86.6:5YS(29924)

226 FEM

230 REM %DISFPLAY TEXT USING CURSOR

235 REM % CONMTROL

246 REM

258 POKES? .7 :POKESR.918YS(29216)

260 PRIMT" XASRAFH OF SINE FUNCTION®"
27a REM

280 REM #PLOT GRAFH OF FUNCTIOM. HOTE
205 REM % OFFSET GIVEN TO FUNCTION

290 REM ¥TO ENSURE NO MEGATIVE VALUES
235 REM % FOR PLOT OR VALUES OVER 135
z0a REM

318 FORD=2TO37

220 A=IHT(SIHCCR-2) /5, S)¥46)+50

230 POKERSS.R:POKESA,20:POKEZ1 . A1POKEFEE6.2
235 SYS(297EBD

340 MEXTR

250 GETAS$: IFA$=""THEN3SH

355 REM FRESS AMY KEY TO END

266 END

RERDY.

132

BARCHART 1

The loader on pp. 120-7 should be loaded and run once before
using this program.

DESCRIPTION

This program draws a bar chart of up to 31 values with positive
numbers. The Machine Code routines that are called from this
Basic program are:

DRAW BORDER-SYS (29024)

CURSOR CONTROL~-SYS (29216)

PLOT VERTICAL FINE BAR—-SYS (29408)

The REM statements are not needed as they are purely
informative. Therefore the program starts at line 100, which limits
the memory and clears the pointers. At line 100 P% is set to equal
31 integer numbers. Lines 150-160 are the data for the bar chart.
Lines 200-230 read the data into the array P%. Line 240 clears the
screen, a sensible statement before attempting to display anything.
Atline 255 the screen colour is set to grey.

The bar chart is set up in lines 310-340. The data (A) is read and
POKEd into locations 87 and 88, then the cursor control routine is
called to position the cursor for the next to be displayed. Lines 380
and 385 draw the border around the limits of the bar chart. The
POKE’s to 89 and 90 set the start of the column at the top left
corner and at the screen line number of border start. The POKE's to
91 and 92 define the width and the height of the number. On line
385, location 786 holds the character colour (in this case blue).

Lines 420-460 simply go through a loop 1 to 32 and calculate the
plotting scale, the highest value is returned in B and on line 500 it is
printed. Lines 540-590 display the barchart using the Vertical
barplot routine. The variable ‘Q" holds the value of each bar as it
passes through the loop and calls the barplot routine to place it on
the screen. The colour of each bar is determined by C in line 665,
but there is a check in line 566 to make sure that the colour of the
bar is not the same as the background or previous bar. Line 60
waits for a key press after the bar chart has been displayed, and
then ends the program.

133

18 FEM www*»»wwu+¢w++++++www*
¥ SIMGLE DATR SET OF UP TO 2

25 FEM #YALUES ALL +YE HUMEERS

28 REM *ARE DISFLAYED BY THIS ROUTIHE
=% REM #AS A BRARCHART.

401 REM #MACHIME CODE ROUTIMES USED

45 REM # AFRE :

=3 REM % SYS02%024) ~ DRAW EORDER

€8 REM # SYS(2R216) - CURSOR COMTROL
T REM * SYS(294G2) ~ FLOT VYERTICAL
7S REM % FIME RES EAR

0

REM 4“##+#’%4‘§4+4‘4‘##+’¥++¥+#++¢+++#++*
FEM ® LIMIT TOF OF MEMORY

a
5
i
@
a
5
)
T
169 FOKE 55.0:POKESS. 112 :FPOKES] .8 :POKESR, 112:CLR
116 DINFR(E
128 REM
138 REM #DATA TO BE DISFLAYED
140 REM
156 DATA 2.5,6.3,2,8,10,15.11.17.54,22. 18
155 OATA 16,17 .21.18
160 DATA 25.23.28.26.28,13,5,21 .28,26,35
178 REM
188 REM #FUT CATA IHTO ARRAY FX
126 REM
ZEE FORD=1TOE1
210
26

ME®! \TI]
FRIMT"O"
FEM

FEM #DI“FLH TEXT USIHG CURSOR

REM * COMTROL

REM

DATAZ, 14, " REXAMFLE BAR CHART®E"

DATHEL . 2.0

ORATREE 7. "B vvoneocasssansnnansnseneesss &Y
FORD=1TOR

8 READA :FOKEST . A:READA :FPOKESS A1 SYSCES2160
FRERDAE :FRIMT" A AF

HEMTE
358 REM
25 REM #0RAK BORDER ARCUMD DISFLAY
365 REM # ARER
REM
FOKE Ec‘ﬁ.:‘.'Fﬂl‘qu VAR POMESE 2

FEM
FEM #DEFIME SCALE FOR FLOTTIHG
B=a

134

43@
44
456
4£6
47g
428
45

Sze
SE5
b3 o)
S48
Soe
b1 ¥
TES
=1
ove
bat=ls]
Sge
=talc)
05

FORG=1TOZ

A=PXI0)

IFAETHEME=R

HEXTR

REM

REM #PRINT MAXIMUM DISFLAYED “WALUE
REM Ll i

EééHT S ULHILILIE B2

FEM *DISFLAY BARCHART USIMG YERTICAL
REM #* EARFLGT ROUTIME

FEM
A=R~1325
FORQ=1TCOZ1
AS=THT PRI A

C=INT(RMDC1O%S 3+
IFC+248=PEEK {53281 YORC=COTHEMSES

FORESE, 21 :FPOKESS . @+6 1 POKES] RS s FOKETSS , C
SYS(294B2) :CC=C

HEXTR

GETR$:IFA$=""THEM £9008

REM ##LAIT TILL KEY FRESSED TO EMHD##

FEROY.

136

BARCHART 2

The loader on pp. 120-7 should be loaded and run once before
using this program.

DESCRIPTION

This program displays a bar chart of two sets of data, both having
up to 15 numbers where all 15 values are positive. The Machine
Code routines used in this program are:

DRAW BORDER—SYS (29024)

CURSORCONTROL—SYS (29216)

PLOT VERTICAL FINE RES BAR—-SYS (29408)

PLOT VERTICAL FINE RES LINE—-SYS (29760)

Line 100 limits the memory and clears the pointers. Line 110 sets up
an array of integer values in P%. This program uses exactly the
same technique as the first barchart, the only differences being the
use of the vertical fine res line. The fine res barchart is displayed
using lines 600-640.

The third program displaying a bar chart uses a single set of data
of up to 30 values, the values can be negative or positive. This
program uses the following Machine Code routines:

DRAW BORDER—-SYS (29024)

CURSOR CONTROL-SYS (29216)

PLOT VERTICAL FINE RES BAR—SY'S (29408)
PLOT VERTICAL FINE RES LINE—SYS (29503)

PROGRAM STRUCTURE

The lines of particular interest that are different from the other
barchart programs are:

Lines 615-640 : This routine displays the negative bars.

The positive bars are displayed in the upper half of the border and
the negative bars are displayed in the lower half.

136

18 REM ssbddssiobimibinmbs st tain ik
20 REM #TWO DRTA SETS EACH OF UP TO 15#
25 REM ®VWALUES ALL +VE HUMBERS #*
38 REM #ARE DISPLAYED BY THIZ ROUTINE #
IS5 REM #AS A DARCHART, *
40 REM #MACHIME CODE ROUTIMES USED

45 REM ¥FRE:

*
¥
¥
¥
*
SYSI2I21€) - CURSOR COWTROL #*
*
*
¥
*
*

8 REM % SYS(25824) - DRAW EORDER
£6 REM #

72 REM ¥ SYS{Z3498> -~ PLOT WERTICAL
T4 REM ® FIME RES EAR

73 REM % SYS(23788) - PLOT VYERTICAL
VE REM % FIME RES LIME

20 REM #¥Ediie R 258 24
9g REM LIMIT TOF OF MEMORY
188 POKE 55,0 :POKESS.112:POKESL .0:POKES2, 112 :CLR
lig DIMPXC2LD

126 REM

178 REM #0DRTR TO BE DISFLAYED

148 REM

158 DARTH 2.1.4,2,6,3,8,4.1@.5.12.6.14.?.16

155 DATH 8,12.9.26.16

160 DATAH hh.ll.c4 12.22,12.228.14,.08, 15

178 FORGR=1TOEH9

126 RERDA

136G PHOEY=A

B8 HEMTR

ha BRI S

218 REM

220 REM #DISFLAY TESRT USINHG CURSOR
223 REM * COMTROL

238 REM

=46 PRINT"O"

245 POKESZZEL .12

250 DATAHL .14, " BEEWAMFPLE BAR CHRRETR"
258 DATAZB.Z .6

270 DATARZEZ,.7."1 2245878511111 41"
228 DHTH_J,.." g1 2345

293 FORD=1TO4

88 READA (FOKEST . ArREADA s POKESS R SYS 22216
REACAE :FRINT" 2"FA$

HEXT&

REM

FEM #DRARWK EORDER HEGHHD OISFLAY

”°m REM
DEE FuiEE?
35S POKETS
I7é REM
20 REM #DEFIME SCRLE FOR FLOTTIHG
298 REM

4RAG E=E

4168 FORG=1TOZ3

FPOKESE, 21 POKES 1, 32 :FOKES2 . 26
S 2AE24)

137

A=

IFA>BTHEHE=RA

HEXTE

REM

FEM #PRIHT MAXIMUM DISPLAYED VALUE

REM

FRIHT" sinaleeeh "B

A=E135

FORS=1TO22

REM

REM *#OISFLAY EBRRCHART #1 (BARRD

FEM

AS=THTCFHCBY7AD

C=IMTCRHDC 1Y #2)+1

& IFC+240=FPEEK(S32E81) ORC=CCTHENS4S

3 POKES@, 20 tFOKESS . 0+8 1POKESL , AS :POKEFEE6 T
SYSC2DGRE

5 CC=C

FEM

FEM #DISFLAY BRRCHART #2 (LIMED

FEM

G=0+1

AS=INT (PG ARD

C=IMTORMOCL MRS+ .

IFC+240=PEEK (S3281 MORC=CCTHENS 1S

POKESE , 20 :FOKESS , 0+€ tPOKES L AS FOKETEE.C
SYSCIBTEQD

o=
MHESTR

E560 GETA$: IFAF=""THEN &3

55 REM ##MAIT TILL KEY PRESSED TO EHD®¥
RERDY.

138

SCROLLING ROUTINES

There are four machine code routines in this section. These are to
scroll an area of the screen in the four (right, left, up and down)
directions. The routines do a complete scroll of the required area
and also scroll the colour RAM.

Again some of the previous routines are used for the displays and
so are included in the loader.

SCREEN SCROLLING RIGHT

The first scrolling routine is called with SYS(29952): it scrolls a
specified block of characters, one column to the right. The left most
column is filled with spaces and the far right column disappears off
the screen. The top left co-ordinates of the scrolled block are
determined by two variables: column and line number. The width
and height of the block are set by variables, with a minimum of O
and a maximum equivalent to the dimensions of the screen. The
routine requires the following variable locations:

89 column number of top left of scrolled block.

90 line number of top left of scroiled block.

91 height of scrolled block width of scrolled block.
92 width of scrolled block.

The colour is retained throughout.

SCROLL LEFT

The second scrolling routine scrolls the contents of a set block of
screen characters one column to the left, the right most column is

filled with spaces and the left most column disappears. The top left

co-ordinates of the scrolled block are determined by two variables:

column and line number. The width and height of the block are set

by variables, within a minimum of 0 and a maximum equivalent to
the dimensions of the screen. The routine requires the following

variable locations:

89 column number of top left of scrolled block.
90 line number of top left of scrolled block.

91 height of scrolled block.

92 width of scrolled block.

The colour is retained throughout this routine.
This routine is called with SYS (30976).

139

SCROLLUP

This routine scrolls a specufled block of screen characters up one
line, the bottom line is filled with spaces and the top line
disappears. The top left co-ordinates of the scrolled block are
determined by two variables: column number and line number.
The width and height of the block are set by variables, with a
minimum of O and a maximum equivalent to the dimensions of
the screen. This routine requires the following variable locations:

89 column number of top left and scrolled block.
90 line number of top left of scrolled block.

91 width of scrolled block.

92 height of scrolled block.

The colour is retained throughout this routine.
This routine is called with SYS (30128).

SCROLL DOWN

This routine scrolls a specified block of screen characters down one
line, the top line is filled with spaces and the bottom line
disappears. The top left co-ordinates of the scrolled block are
determined by two variables: column number and line number.
The width and height of the block are set by variables, with a
minimum of 0 and a maximum equivalent to the dimensions of the
screen. This routine requires the following variable locations:

89 column number of top left and scrolled block.
90 line number of top left of scrolled block.

91 width of scrolled block.

92 height of scrolled biock.

The colour is retained throughout this routine.
This routine is called with SYS (30240).

140

5 R

._-t.?ﬁ

el

S L50]

1ae
181a
1626
1626
18415
1856
1aca
1876
1926

1E36

1128

EM **#*#*##*##**#***#*###*: FEEEE
EM #ROUTIME TO CALCULATE SCREEN *
“EM #ADDRESS FROM WALUES FOR *
EM # COLUMN IH 23 *
“EM # LIHE IM cle] *
EM #AOORESS RETURHED IN 21 AHD S2%
EM #THIS ROUTIME IS OMLY CRALLED
EM #BY OTHER ROUTIHEZ IM THE *
REM#&PACKAGE DO HOT USE BY ITSELF. %

REM&ERROR FLAG IM LOCATION V25 ¥
FEM#EEEEFEEFERHESEEEREREREERE R R R
I=28572:T=0

FRERD A

IF A=-1 THEH 193

T=T+FA:POKEI . A

I=I+1

GOTO 148

FRIMT"IROLUTINE 1:”

IF T=11%72 THEM FRIMT"MMEWTERED 0O.K":GOTO

FRINT"MMEMTERED IHCORRECTLY®
END
DATALES,6, 141,173, 165,89
DATR42 . 66,201,408, 176,74, 165
CATASE . 45,582,261 ,25, 176,98
DATA16%.0,133,87.133 .82, 132
DATAS4 . 133 .95, 165, 56, 246,15
DATA176.24, 165,87 . 105 .4, 133
DHTHBT.144.2.”’W 85,202 208
242,24, 165 87,101 ,89,12

ATHES 188 487184714554
DATA24 . 165,87, 133,94, 165, 8°
OATA1GS, 212, 133,55, 96, 169
DATA141.17,3,165,6, 133,89
DRTRTE.7.112.169.2,141.17
DATRZ.162,3%,133.59.76,7
DATAL1Z2.1659.3.141,17.3, 169
DATAB . 133,96.76.7 . 112 . 165
DATA4,141.17 .3, 169,24, 133
DATASE.PE.7.112,~1

REM

REM# EEERERRRERFE R
REM¥ORAM R EORDER OF AMY SIZE,AHv
REM#LOCATION, AND AMY COLOUR. TOF#

REM# COLOUR IS STORED IH TE&.
FEM&ROUTINE CALLED BY SYSC2R0240

REM#LEFT COORDIMATES ARE: *
FEM* COLLIMH IN ag *
REM# LIME IN o6 #*
REM# WIOTH IH a1 ¥
FEM#% HEIGHT IH 32 ¥

£

141

REARD R
IF A=-1 THEHM11ZR
FOKE I.A:T=T+A
I=I+1
GOTOI1Z6
PRIMT"IOROUTIHE 2:"
IF T=28557 THEH FRINT"NMEEHTERED 0. K. " :GOTO2B0E
PRINTYENMEMTERED IMCORRECTLY"
EMD
DARTAT2.152.72.1322.72.00 .6
DRTALLZ . 165,87, 123,83, 165,82
ORTARIZE. 96,169,168, 141 , 16,2
DRTAZZ.212.113,24 165,87, 165
DRTALL 133,27 .132 .85, 1F=.°=
ORTALAS &, 13 =15 I 5
OATA1GL . 141,158 .3.2
DATRE4 . 165,22, 161 .91.,1
DATRL192,.87 . 165,20, 185,68, 132
L1ES,1032,141 ,16.3.32
. lev'_"—"rlu-fr—‘l '16
1"”’-\.!
TL.105.40
:,1@5.9,133
L.hav 249,189,533, 141
22.21,.11¥,1ﬂ4 176
1ﬁ4,36 184,591,165
'4 lﬁJ

£ -.9’
LTS, 1C‘r~.114‘.|v"(
OATAZ24 165 .87, 133,94, 165,88
ORTRIESS . 212,122, 8
DHTH14F,94,24 1
ODATAL
OATARSS , 282 . 203,
REM
o M b R
FEM#ROUTIMNE TO FPLACE THE
REM®AT A LOCATION OW THE
REM#LHOSE COOROIMATE
PEH#IH H?=LIHE AMO

L, 172,18 .2
av.185.49
s, 185,68, 123
213,98, -1

e

READ H

IF A=-1 THEHZ148
FOKE 1I.AR:T=T+A
I=I+1

142

2126 GOTOZRSS
2148 PRIMTUZROUTIME 2:*
2156 IF T=51€Z THEW PRIMT"BMEEHTERED O.K. " :GOTQRGOE
2168 FRIMT"EEEHTERED INCORRECTLY"
2178 END
188 DATATZ.1S2.72.138,.72.169.19
2198 DATAZZ2.22.231.185.57.246.5
2268 DRTRIG®.IT,32.282.231.198 .87
2218 DATAZES.247.165,.92,246.9,163
2226 DATRZS.32.22,231.198,88,2068
2220 DATAZ47T.164.170.1584, 162,104 ,9¢, -1
SE0E REM
TO1E REMEEEEFEEEEEEEREE bbb or
G268 REM#SCROLL CONTEMTS OF SCREEM #
3630 REM$ELOCK RIGHT OHWE COLUMH. TOF %
REM#LEFT COORDIMATES OF BLOCK IN #
& REM#SS <COL> AMD 96 CLIME). BLOCK®
@ REM$HEIGHT IH 91 AHO WIDTH IH S2.#
8 REM&COLOUR IS RETARIMED THROUGHOUTH
3020 REM#ROUTIME CALLED BY SYS(29352) #
O3 REMESREEEEEEEEEEEEabEEnEEsE s
7108 I=23952:T=@
116 RERD A
2120 IF A=-1 THEM2168
3130 POKE I.A:T=T+A
3148 I=I+1
3156 GOTOZ11E
3168 PRIMT“IROUTIME 4:"
317E IF T=199S5 THEHM FRINTMEENMTERED 0.K. " :GOTO4G66
186 PRINT“SEENTERED IMCORRECTLY"
319E END
Z208 DATA?2,152,72,138.72.32.0
3216 CATAL1Z2,56.165.87.283,1, 153
3220 DRATRSS.165.22.233.0,1332, 30
3220 DATAIGE.91.164.92,126,177.8
3248 DATA14S.87.165,90,24,105,212
3256 DATALZEZ, 57,165, 88.24,1605,212
260 DATA133.95. 165,89, 133,55, 165
ZETE CATAEY . 135,94 177,96, 145,94

A DATALZE, 268,223, 169,32, 145,87
DATAZY, 165,237,165 . 46, 133, 87
DATALS4 . 2,230 ,.85.24, 165,83
DATAIES, 46, 133,89, 144 .2, 226
2320 DATASO,302,208.151,104,176. 104
3330 DRTALES. 164,96, -1
4080 REM
4618 REMSEEESEEEEEEEEEnb et
4820 REM#SCROLL COMTEMTS OF 3
4E3E REM#ELOCH LEFT OME COLUMM. TOF %
4840 REM&LEFT COORDIMATES OF BLOCK IM #
4956 REM#SS (COLY AHD S& (LIME»., BLOCKS®

)
B
=

D Ul 0 G () D
58 %
(I M N
]

) Ly

P
-
-
o
2

2 DY

D = 5 D

@D &

J L)

4BE8
4ETER
4828
4B9E
4188
4118
4123
4136
4146
4156
4168
417
4186
4193
4204
4218
4326
4238
4248
4254
4558
4220
429G
e nic]
4218

agaeds]
SEZE
S04
SESa
st 115]
SavE
S029
Sa96
S1ag
Si1a
5128
5138
S149
5158
S1€m
S1va
S1e
Sias

2808
E"’lﬁ

ppeged)

144

REM#HEIGHT IM 91 AHD WIDTH IH S2.%¥
REM#COLOUR 1S RETARIMED THROUGHOUT#
FEM#ROUTINE CALLED BY SYS{20376) *
REM&$# S SRR R R
I=2037&:T=0

RERD A

IF R=-1 THEM41&8

FOKE I.R:T=T+A

I=I+1

GOTO4116

FRIMT"IROUTIHE S:

g, IF T=1@72@ THEM PRINT"SMEMTERED O.K.

FRINT"XBEHTERED IHCORRECTLYY
EHD

DRTATZ.152.72.138.72,.22.9

DRTAR112.24, 165,87, 1685.1 . 13%
OATASS . 155,.88,165.6,133,538
DATRIGE .91, 166.8,177,89,145
DRTHST . 165.268,24, 185,212,133

UHTHQ".1€J a8, 24, 1H5,512 132

“:(1""7 I 1 = ':7
EQ¥HI”‘ °4 Fir -0 14= 53 5he
DATAL9E .82 ,144 ,.221 . 183,382,145
ORTAH2T .24, 165,27, 165 .40, 1332
wOTR2ST . 144 .2, 226, 82,24, IEJ
DRTAZS . 185.48, 133,29, 144,
DHTHE?B,?B.ZBE.EB?rlgﬁ.124,179
DATA1G4 , 162, 184,938, 8,~1
REM
REMESS S HEEERFERREREEREEREHE RN
REM#SCROLL CONTEMTS OF SITREEN #*
REM#ELOCK UF OHE LINE. TOF LEFT #
FEM*COORDIMATES OF BLIOCK IM 29 *
FEM#®CCOLY RND &3 (LIMED), BLOCK *
REM#HEIGHT IH 31 AND WIDTH IN SZ.%
REM&COLOUR IS RETAIMED THROUGHOUT®
FEM# UHTINE CALLED BY SYS(2E L

I=21
RERLC H

IF A=-1 THEHZ1E&
FOKE I.A:T=T+R
I=I+1

GOTOS116
PRIMT"IFROUTIME &:

IF T=115&84 THEM PFIHT"ELEHTEFED a. K.

FRIMT"EREHTERED IMCORRECTLY"
EMD

OATATE 152,72, 138,782,328
DATARLL1Z.24, 165,287,105, 48, 133
CATASS, 165,828,165, 8,123,508

" GOTOSEEa

Y GOITOERER

DHTH166.92,164.91.136.1??.89
DRTH145.8 £5.908.24.185,.212
OATRIZE, 16‘ £2.24.105, 212
DHTHluh,,5 125, 9 122.55, 15
DATASY . 1232.94 . 177 .36, 145,94
DHTleS 18.2 -.k@_._4H 25,249
CATARICS,. 7. 185,46, 132,27, 144
DATRZ .238,2828.24, 165,22 . 1085
DATR4G8, 122 .29, 144, 2,22
DARATATE . 133,117 . 164,31, 126,
DATARZZ. 145,687,135, 156,249,184
ODATARL7E. 164,168, 184,35, -1
S85E REM

:HIB FE Mo e e i S
FEM&SCROLL CONTEMTS

REM&ELOCEK DMK ONE LIME, TﬂP LEFT#

FEM&COORDIMATES OF BLOCK IM =29 *

REM&{COLY 26 (LIMED.BLOCK HEIGHT #

FEM&IN S1 AND WIDTH IM 22, *

REM&COLOUR IS RETAIMED THROUGHOLIT#
ITIME 'HLLED £

READ A

IF A=-1 THEHWS1&&
2133 POKE I.A:T=T+A
145 I=I+1

2156 GOTO=118

188 FPRIMTU"IROUTINE 7"

MM O ®d

E1vE IF T=14455 THEW PRIMT"MMEMTERED O, K. " 1GOTOVHGE
188 PRIMT"MMEMTERED INCORRECTLY"

£1598 EMND

c2En DATARTE.152.72.138.72.,32.,

€211 DATALLIZ. 186,92, 262,24, 165, 2

228 ORTHI1GS . 48, 127 .,144,_._dﬂ

S2TE DATHY 282,268, 242,595, 165,87

DATHZZZ . 46,122,283, 165 .28, 233

ODATAG, 123,99, 165,32, 184,34

OATAR1ZS ., 177,859,145, u..lr-.wﬁ
DATAZY, 165,212 ,132.97., lc =t
DATHZ4 . 185,212,133, 55 3}
OATAL1Z2E .96, 165,687,133
DATR2S . 145,94 1326, 1 262
DHTH24@v&JrthID 7

145

FEM#ESFEREEEER kb ¢
REM#0RAM WERTICAL EBAR - BOTTOM TO%
REM$TOF OF SPACES TERMIMATED IM FA%
FEM&THIM LIME.RESOLUTION 125 X 40%

REM#COLLMH # IH 89, ¥
: REM#L IHE # IM 29, *
5] REM#LEMGTH IH 31, ¥

REMHCOLOUR IH TR&. ¥
FEM¥ROUTIHE CALLED BY SYSCZITEO) #

R R R R R RN RS P R Y

a

1 PRERE 2R SRR RS L LSS B 240
i s T=6

1

1 IF A=-1 THENT1TA

1 FOKE I.A:T=T+A

1 I=1+1

1 GOTOF128

1

FRINT"TROUTIHE &3¢

IF T=2367 THEH FRIMT"EREHTERED O, K. " :GOTOVZZER
FRIMT"MEEHTERED IHCORRECTLYY

EHD

DATARTZ2.,1852.72.1282.72.32.8
DATAL1Z.168,0,165,21,201 .2

DATA4R, 37 . 2332.9,133,91.1:3

DATA3Z. 145.87. 172,18, 3
DATASY .24 . 165,27, 232.. :
E&8 DATAST, 132,534, 165,.98,233.,0
DATAR122.282,24 185,212, 122,35
DATALES , 28, 208,213,178, 189,124
DATAL1E6, 145,27 .172,. 18,2, 145
DATAS4 ., 164, 176,104, 168, 164,94
A DARATALGEA,22,7H.64 67,658,653

8 DRTAR2.,32.8.-1

20 POKESE .9 :POFES2, 112

a

o

Jl PR Rl RS ROt R G I OO (VR)
QDRI HIHIDLSD DD

S B

) B R R DY FIRY e e

R R R e R R R R

FOKESS , A :FOKESS , 112 :CLR tHEMW

146

BLOCK SCROLLING

The loader on pp. 141-6 should be loaded and run once before
using this program.

DESCRIPTION

The program uses a block scroll routine to scroll up or down a long
list of items. To scroll up use the F1 key, and to scroll down use the
F3key. The program uses the following Machine Code routines:

DRAW BORDER-SYS (29024)
SCROLL BLOCK UP OR DOWN ONE LINE-SYS (30128)
CURSOR CONTROL—-SYS (29216)

PROGRAM STRUCTURE

Thefollowmg lines are of particular interest:

120-135 : Limitthe top of memory and clear the pointers.

210-320 : Thedatatable to be displayed.

330-360 : Readsthedataintothearray L$.

400-470 : Displaysthe test using the cursor control routine.

505-520 : Draws a border around the display.

590-640 : Checks for legal key press and if without bounds
scrolls up or down.

680-710 : Scrollsthe list up one entry.

750780 : Scrolls the list down one entry.

147

Wy 0

184

e

~ e
-'r;..,»

REM st b eiss s eibieess

REM

REM
REM
REM #L

I=7.

*THIS PROGRAM USES THE UFP AMD
REM #DOWH ELOCK SCROLL

REM #ROUTIMES T GISPLAY THE

REM #COMTEMTS OF A LONG LIST

FEM ¥DATA ITEMS.
#SCROLL UF THE LIST

¥AHMO KEY 2 TO SCROLL DOWM THE

UZE KEY 2 TO

REM #THE MACHIME CODE ROUTINES H“ED#

FEM #BY THIS PROGRAM ARE:

REM
REM
FEM
REM
REM #

-V-!#-*

FOKESL

* 3

SYsS(2aez4)y -~ DRAW A BORDER *
SYSc2mizer ~ SCROLL BLOCK
UF OHE LINE

CoWH OHE LINE
SYSc2a216y - CURSOR COMTROL*
FEM $p kg ek e e
FOKESS B :POKESE . 11;

L POVESZ .

*
¥

12:0LE

REM LOMWER TOP OF HEMDEV

DIMLEY

REM

SE

REM %TAELE OF DATA TO EBE DISFLAYED.

REM #*

HOTE THE USE OF

REM #MULL EMTRIES AT EBEGIHING AND
REM % EMD OF THE TRELE

FEM *THIS GIVES
5 REM % TRAILER AT BOTH EMHDS

FEM #®0F THE DISFLAY.
HEATHEZS.

FEM #*
REM

CETA"
ORTA
DATR
OATA
ORTHA

3 OFTA

ORTA
DATA
OARTHA
ORTAH
DATH
OATH
CATH

3 OATH

DATA

B OATH

ORTFR
OATA
CAETH
DATH

148

now
r

"ITEM
"ITEM
“ITEM
"ITEM
"ITEM
"ITEM
"ITEM
"ITEM
"ITEM
"ITEM
"ITEM
"ITEM
"ITEM
“ITEM
"ITEM
“ITEM
"ITEM
"ITEHM
"ITEM

e 000) Ty A B 0 R e

Al

-
AN

1z
14
19
15
17
12

13

s e uas
seee s
cse e an
eses e
e ene s
eanses e
s s a e
eenos e
PR

.

cv o s

ses e e

A ELAME SCREEMN

ESSEMTIAL FOR

bl l]
o)
S1a

S19
Sz
S2a
S4a
545
556
559
SEA
565
ST
]
pted s}

DATA "ITEM 28 ..viieinnersnnenssrnnass”

DHTH " " - " " - ”" " , L L . L
FORR=1TOZE

FERDAS

LECRDI=A%

HEXTR

REM

REM #DISFLAY TEXT USIH
FEM # COMNTROL
FEM

PRIMT"O"

L O TR TR T 1]
. » .

IG CLIRSOR

FORKESZ2E1 , 12 POKESZ2E6., 12

DATAZ.&, "EXAMPFLE OF SCROLLED

DATAY, 2, "WISE KEY F1 TO SCROLL UF &¢
DATARZ,.9."QISE KEY FZ TO SCROLL COHR

FORB=1TOZ

READA :POKEST . A :RERDA (FOKESR , A SYE(25216

RERDAS :FRIMT"E"A$
HEHXTR
REM

FEM #DRAW BORDER AROUMD SCROLLED
FEM % PORTION OF SCREEM

REM #LOCATION 127
REM #IF 137=4 THEM KEY
REM * AHO SCROLL LF

FEM

C=g

FOKEES , B:FOKESE, 18 :POKER] . S8 :FOKES2 . 16
' POKEVEE . C13YE(29024)

GOTOEER

REM

REM #LOOK FOR KEY IWFUT IH

' F1 PREZSED

FEM #®IF 197=5 THEN KEY FZ PRESSED
FEM % ANMD SCROLL DOWN
REM #ALS0 CHECK POIWTER TO TAEBLE IS

REM #% WMITHIM BOUMDS.
REM

IFRCITHENR=1
IFQF2RTHENR=23
M=PEEK (1572
IF¥=4 THEMW @

=0+1 s GOTOSSE *

IFH=0 THEM @=0-1:GOTOVSE0

GOTOSS6
REM

REM *SCROLL LIST UP ONE EHNTREY

REM

FOKESSR , 2 POKESE, 12 PO

FORESY . 17 :POKESS , 21 EY'S
FRIMT"R"LECQ+S
GOTOS5E

ERL L ITIPOKESZ .G

L ERE1EY

"t

LONG LIsTm

149

2 REM
8 REM %SCROLL LIST DOWN OHE ENTRY

a REM
758 FOKES?,2:FOKESD.12:FOKES1 .37 :FOKES2.€

750 SYS(38240>

TEA FOKES?.12:FOKEES.2:8YS(29216)
778 FRINT"G"L$CQD

a8 GOTOSSa

READY.

150

LONG WAVEFORM GRAPH

The loader on pp. 141-6 should be loaded and run once before
using this program.

DESCRIPTION

This program displays the graph of a function and scrolls the
function across the screen from right to left. The Machine Code
routines used in this program are as follows:

DRAW BORDER—-SYS (29024)

CURSOR CONTROL-SYS (29216)

SCROLL SCREEN BLOCK LEFT - SYS (30976)
DRAW VERTICAL FINE RES LINE - SYS (29760)

PROGRAM STRUCTURE

The lines of interest in the program are as follows:

19-20 : Limittop of memory andclear pointers.

40-41 : Draw border around the scrolled screen area.

50-80 : Displays the text using the cursor control routine.

90-140 : Displays the graph of the function and scrolls from
leftto right.

151

[
R

OO0 = T B QPO

R
1o
i1
iz
i4
15

ie

=15}
24
as
=13
a7
24
166
118

REM sk aipol ook aiekiok
REM %THIS IS A YARIATION ON THE PRG *
REM %0N PAGE 132. THE GRAPH OF THE *
REM #FUNCTION IS SCROLLED ACROSS ¥
REM #THE SCREEN FROM RIGHT

EM %70 LEFT COMTINUGUSLY AS EARCH
EM #PLOT POINT IS CALCULATED.

REM #IDEAL FOR DISPLAYING LONG

REM#USES THE FOLLOWING MACHINE
REM¥CODE ROUTINES:

REM¥ SY¥S(29216)> - CURSOR CONTROL
REM% SvY5(296824 - DRAW BORDER
REM& SYS(38376> - SCROLL SCREEN
REM¥ BLOCK LEFT

REM¥ SYS(29768> - DRAW YERTICAL
REM# FINE RESOLUTION LINE

RE Mkt i oiiopiokokionor
POKESS. 6:FOKESE, 112

POKESL, 8:POKESZ.112:CLR

REM LOWER TOP OF MEMORY POIMTERS
PRINT"O"

POKESZ2E1 , 12 :POKESEZ2E6,12

REM

REM *DRAW EBORDER AROUND SCROLLED

*
*
*
#*
EM *GRAFHICAL DISPLAYS. :
*
*
*
*
*
¥
*

. REM ¥ SCREEN AREA

FEM

FOKESS . & :POKESE, 7 :FOKESL , 39 :FOKESZ . 15
FOKE?2S .0 :8Y5(256824)

REM .

REM #OISPLAY TEXT USING CURSOR

REM * COMTROL

REM

FOKES? . 2:POKESRE ., 4 :1SWS(28216)

FRINT" FEXAMFLE DISPLAY OF LONMG WAYEFORM"
FOKEST , 4 :POKESE ., 18:SYS(29216)
PRINT"&OLZING LEFT SCROLLINGE"

REM

REM #DISPLAY GRAFH OF FUNCTION

REM #SCROLLED FROM RIGHT TO LEFT

FEM

FORG=1TO1OASTEP. 15
A=IHTCSIM QI *4BI+45

POKESS .2 :POKESO . 2 :POKERL . 12 :POKES2 , 36

115 SYS(3aa7er

126
125
120
146
REA

152

L28:POKESQ, 19 :POKESE A POKETSS .6
SYS{2ITEDD

FOR¥=1TQ1@0 tHEXTX

MEXTQ
oy,

LARGE SCREEN DISPLAY
LARGE SCREEN INITIALISATION

The area to be used as a large screen is first initialised, the variables
to be used are initialised and the memory area, to be used for text
storage, is cleared. There are three variables that the initialisation
sequence uses. They are as follows: the number of columns wide
and lines deep of the large screen and the most significant byte of
the starting address of the large screen memory. The top of the
memory must be lowered to the start of the large screen memory,
otherwise Basic will overwrite the text area. The starting address
used will depend on the size of the large text area, and each page
will require 1K of memory. In our example Basic program, this will
allow 8 pages of text. This routine requires the following variable
locations:

820 large screen width in columns.

821 large screen depthin lines.

823 MSB of start of text storage memory address.

This routine is called from a Basic program with SYS (31083)

The large screen section also uses some of the other Machine
Code routines so all the code should be in the 64 before using.

LARGE SCREEN CLEAR

This section of code clears the entire large screen memory area, all

locations in that area are set to decimal 32, the screen ASCIl code

for a space character. This routine does not require any variables.
To call this routine from a Basic program use SYS (31124).

LARGE SCREEN DISPLAY

Since the text area is actually larger than the size of the screen, this
routine displays a section of the large screen. Specifying
that the co-ordinates are column 0 and line 0, they will display the
left 40 columns and the top 25 lines of the large screen text area.
Similarly column 40 and line 0 will display the right hand 40
columns and the top 25 lines, or column 20 line 0 will display the
central 40 columns and the top 25 lines. Using this procedure any
part of the text area can be displayed, providing it is within the limits
of the maximum column and line number. Line and column
number should not be less than 0, nor should the column position
be greater than the large screen width minus 40, or the line number
greater than the large screen width minus 40, or the line number

153

greater than the large screen depth minus 25. These co-ordinates
designate the top left corner of the screen, the use of greater values
will result in a faulty display. This routine requires the following
variable locations:
824 |arge screen column number where top left of display starts.
825 large screen line number where top left of display starts.
This routine is called from a Basic program with SYS(31173).

LARGE SCREEN SAVE

This section of code saves the contents of the screen and stores it in
the large screen memory area, in a position corresponding to the
co-ordinates specified. The co-ordinates refer to the line and
column number of the large screen and designate the position of
the top left corner of the actual 64 screen. The constraints on
co-ordinate size are the same as that defined for large screen
display. Text displayed in the large screen memory can be saved
and then recalled later, using a monitor to save it. This routine
requires the following variable locations:

824 |arge screen column number where top left of display starts.

825 large screen line number where top left of display starts.

This routine is called from a Basic program with SYS (31261).

DISPLAY PAGE

This routine requires the large screen memory to be initialised with
the initialisation routine so that it is 40 columns wide and up to six
pages or 150 lines long. Any of the six pages can be displayed by
putting the required page number into location 91 and calling the
routine. If fewer pages are required, then the initialisation routine
should be given the correct number of lines for the required
number of pages. This routine requires the following variable
locations:

91 page number to be displayed.

To call this routine from a Basic program use SYS (31349).

SAVE LARGE SCREEN PAGE

This routine will save the current screen contents into the large
screen memory area at a position determined by the page number.
This routine requires the large screen memory to be initialised with
the initialisation routine so that it is 40 columns wide and up to six
pages or 150 lines long. Any of the six pages can be saved by
putting the required page number into location 91 and calling the
routine. If fewer pages are required, then the initialisation routine
should be given the correct number of lines for the required

154

number of pages. This routine requires the following variable
locations:

91 page numberto be saved.
To call this routine from a Basic program use SYS(31381).

155

16 REM
26 REM dkkskdikddimpkbnollhioen by
38 REM ¥ROUTIHE TQ CALCULATE SCREEN %

48 REM ¥ADDRESS FROM VALUES FOR *
58 REM % COLUMN IH 29 *
6@ REM * LINE IN sa *

78 REM #ADORESS RETURMED IN 31 AND S2%
@@ REM *THIS ROUTIME IS OMLY CALLED %
2% REM *BY OTHER ROUTIMES IM THE *
108 REM#FPACKAGE .00 MOT USE BY ITSELF.*
116 REM#ERROR FLAG IN LOCATION 723 *
120 REMsRRREseiniE ok R R S
130 I=28672:T=0

146 READ A

158 IF A=-1 THEW 198

168 T=T+A:FPOKEI.A

178 I=I+1

188 GOTO 14@

196 PRIMT"IRCOUTIHE 1:*

268 IF T=11972 THEN FRINT"RMENTERED O.K":GOTO 1866
218 PRINT"MEEHTERED IWCORRECTLY™

228 EMD

236 DATAR1E.8,141.17.3.16€5.85
240 DATA4S.66.201.48.176,74, 165
250 DHTH99.48.82.2@1._4.1’6.98
ZeB DATA1SS .8.13 ’,8? 132.88.13

278 DATAS4,123,95 5,906,240, Ia

288 DATARLI7AG .24, IEJ)U ,185,408.1323
296 DATA2Y.144.2.2320, 8 2682 .208
209 DATA242,24.165.87.101.89,132
210 DATAE? . 1€65.28.1685.4, 14&.g8

326 DATA24.165.87.132.94,165.8

Z%@ DATALES,212.133,93 .96.169.1

240 DATH141.17.3. le.G 122,82
250 DATATE.7.112.162,2,141, L
6@ DATAZ, 163,323, 13ﬁ.$9 V6.
378 DRTAL1Z.1€62.5,141, ..u.1€°
320 DATRS. 1a4.--,.6,-.11 ,LES
296 DATA4.141.17.3,.169.24.133
489 DATR2G,7E.7.112.-1

iges REM

1016 REM

1026 REMEEEEEFEEEEEREEEORREEER R EER e
1620 REM*DRAN A HORIZOMTAL BAR OF AMY *
1046 REM#E4 CHARACTER. CHARRCTER STORED®
1256 REM#IN 724, COLUMH START IHM 29, ¥
1666 REM#LIME START IN 2@, LEHGTH DF *
1970 REM#LIME IM 21, COLOUR IM
108G REM#ROUTIMNE CALLED EBY SYS(Z2200) *
1996 REMERFEEEEEREEEEEEHEEERREREEEEEEEEN
1106 I=282680:T=0

156

111@
1128
1138
11408
1158
11e8
ii7e

11ga8.
1198
1208-

1216
1228
1238
124@
20K
2e1e
2620
2026
2048
2850
2859
2678
282
2838
2189
211a
2128
2138
2148
215a
=21e@
a217a
zice
21583
2200
2218
2226
2228
zZz4a
2258
2260
eialalc]
ae1a
aze

[

30 O3 6D DY ()
X, A]

P B R]
OO e By

DD DD DG

0

READ R

IF AR=-1 THEN 11¢&8
POKE I.A:T=T+R
I=I+1

GOTO 1118
FRINT"TROUTINE 2:"

IF T=3695 THEHW PRINT"REEMTERED O.K" :60TQ 2069

PRINT"MMENTERED INCORRECTLY"

EHND

DATRY2.152,72,138,72,32.8
DATAR11Z.154,91.173.1€.3.145

DATAS?T . 172.12.3.145.94,138
DRTR2GE.243, 164,170,164, 168,164
DATARSs .—1

REM

REM¥ RS ERERERERREERERRR AR RN
REM#IMVERT A BLOCK OF THE SCREEN #
REM*TOF LEFT COORDINATES IW &9 *
REM¥CCOLY AND SACLIME>, HEIGHT IN#
REM#*21 AHO WIODTH IM 82, COLOUR IN#
REM¥7F26, *
REM#*FEQUTINE CALLED BY SYS(289£0)> *
REPIARER S E R SRR RN RN SRR R A
I=289¢0:T=0

REARD R

IF A=-1 THENzZiGS@

FOKE I.R:T=T+A

I=1+1%

GOTOZ188

FRINT"IROUTINE 2:"

IF T=5238 THEN FRINT"MEENTERED 0.K.*":00T0Z3666

PRINT"MEEMTERED IMCORRECTLY™

END

DATRV2.152,.72.138.72.32.0
DATA112,186,92,164,.91 . 136,177
OATASY,.73.128.145,.87.172.18&

DATHZ. 145,94, 136, 16,242 .24
DATARIES. SV, 105.468,133,.87 . 133
DATARS4, 144 .4,.230.82,236, 95
OATA2G2.268.221.164,178, 164, 182
DATA194 .9, -1

FEM

REMa:Ned i kb e o b b
REM#ORAL A BORDER OF AMY SIZE.AMY*

8 REM#LOCRTION. AND ANY COLOUR, TOF#*

REM&LEFT COORDIMATES ARE: #*
REM® COLUMH IH 289 *
REM# LINE IM els] *
REM* WIDTH IN 21 *
FEr# HEIGHT IH 32 *
REM® COLOUR IS STORED IN 7g&. #*

157

2109 REM#ROUTIME CALLED BY SYS(25824) ¥
2110 REMAESEEEESEREErb Rk E A h o
3126 1=29024:T=0

$1308 READ A

2148 IF R=-1 THEH3120

2156 POKE I.A:T=T+A

2168 I=1+1

2176 GOTOI136

2128 PRINTUIROUTINE 4:"

2198 IF T=265S57 THEM PRINT"NEEMTERED 0.K.":GOTO4BE8
3208 PRINT“MMEMTERED INCORRECTLY"

218 EMD

3220 DATAPZ.152.72.133,72,32.9

T2308 DATA112,165.87.133.89.165,682

3249 DATA13S,9@,169,106,141.16.3

325 DATA32,212,113,24.165.87,1085

2260 DATA41,133.87.133.39.165,8%

3270 DATALES.D.133,8%9,133,590,169

3280 DATAL1G1.141.16,3,32,239,113

3298 DATAZ24.165.5%9,101.91.133.87

3366 DRTA192.87,1565.90,105.8.133

3318 DATASE.169,.103,141.16.3.32

3328 DATA239.113,165,89.133.87,165

3328 DATASO,133.28.166.92.198.87

2248 DATA202.202.24.155.87.105,48

Z35@ DATALZ3.87.165,88,105.8,133

3260 DATASS,202,209.248.169,99.141

33768 DATA1E,3.32.212.113.104.178

3220 OATA104.168.184,.96,164,.51,165

3396 DATAST,133.94,165,88.24.165

2490 DATA212,133,95,173.16.3.145

3410 DATAST,173,18.3.145.94.126

3420 DATA20S,243.36.160.8, 166,92

3420 DATA20Z.202.173.16.3,145,87

3440 DATA24, 165,837,133 .94, 165.88

3450 OATA10S.212.133.95.173.18.3

3468 OATA145,94,24.165.87.105, 4@

2470 DATA133.87,165.88,165.0,133

3420 DATAS2S.262.268,219,96.-1

4066 REM

4010 REMEEEREEEEEREEREEEREE R
4020 REM#ROUTIME TO PLACE THE CURSOR %
4030 REM#AT A LOCATION ON THE SCREEN #
404G REMMWHOSE COORDINATES ARE STORED *
4056 REM®IN S7=LIME AND 88=COLUMH. *
460 REM#ROUTIME CALLED BY SWS(Z9216)%
4070 REMEEEREEEAEREESEEREERRREEREENEEER
4080 1=29216:T=0

4690 READ A

4100 IF A=-1 THEN4148

4110 POKE I.A:T=T+R

158

412a
41328
4148
41358
41€8
417a
4186
4199
4200
421a
4228
42320
S
o1
Seze
Sg3e
T840
Sase
Seca
Save
Soeg
3229
Siea
S11a
S12e
S1z20
S148
51358
S1e@
5178
Sien
o156
S2pa
Szi1a
S2za
Saza
S246
Sasa
Saca
ozve
Szaa
5259
Soea
5310
Saza
]

S4B
5258
Szea
SEve

Sata

I=]+1

GOTO4E98

PRINT"TROUTIME S:"

IF T=515Z& THEM FRINT"MEENTERED O.K.":60TOSE0H

PRINT"MNEEMTERED INCORRECTLY"

END

DATATZ, 152,72.138.72,. 162,19

DATA32.22,231.1€5.87.249.9

ORTAL1ES,17.32.22.2521,19S.87

DATR292,247,165,688,248.9, 169

DATRZS,32.22.221.198 .82, 268

DATAZ47.104.178.1584. 168,104 ,9¢6,~1

REM

REM

FEPERE AR N AOR R RAERR E RRORRRERRER RRR

REM# THIZ ROUTIME EMABLES THE USE OF R ¥

REM# LARGE SCREEN IN MEMORY LUSIHG THE *

REM# HORMAL VIDED SCREEN AS A WINDOMW ON *

REM#% THE LARGE SCREEMN. THE DIMEMSIONS OF %

REM#& THE LRRGE SCREEN RARE 20 COLUMNS BY *

REM# 16@ LINES AND THE WINDOW WILL EE *

REM# MOVED OVER THE LARGE SCREEM RS THE *

REM% DATA IS ENTERED. *

REM¥ THE CALLS FOR THE ROUTNIES *

REM# INCORFORATED ARE RS FOLLOWS *

REM¥ 13> SET UP LARGE SCREEN POINMTERS *
¥
*

REM#% LINES 120-158 OF EXAMPLE

REM#% 2> CALL LARGE SCREEN DISPLAY ROUTIME
REM¥ LINES €4@-€58 OF EXAMFLE *
REM¥ 3> CLERR LRARGE SCREEM *
REM#* LINE 1346 OF EXAMPLE *
REM¥ 4> LARGE SCREEN SAVE ROUTINE *
REM# LINE 15268 OF EXAMPLE ¥
REM* ¥
FEMEESEEEREERERRE SRR SRR R R
I=328957 :E=6 :FRINT"JROUTINE &:"

T=8

READ A

IF A=-1 THEWSZSE@
IF A>25S THENS219
T=T+A:FOKE 1.A
I=I+1

caTOS258

RERD A%

IF T<>A THEHS2SA
FPRIMTR$ 0D, K"
GOTOSZ246

E=E+1
PRINTAR$:T:A
GOTRSZ248

IF E<>@ THEM END

159

s294
S48
s41Q
54268
S328
4406
5450
S48
S470
5426
S490
S50a
5518
SS528
£S28
£54a
5550
5566
s57a
bt =ial
59598
SEa8
5610
SE26
SE28
Se46
S&58
SEER
S&70
SE28
S6390
Svaa
a71i8
s57vaa
5738
S740
5Voa
STEQ
sS¢ra
S5ven
STag
sScea
SS10
sS826
Seza
=E

=23

SoEl
S37TE
SCSR

S23a

160

POKES] @ :FOKES2.112

FOKESS .0 :POKESE, 112 :CLR cHEW
DATA169.48,.141.58,2, 165,85
DARTA4E.55.265.52.3. 176,65
DATR1ES,.998,.48,77.285,.53 .3
DRTALTE.S7,169,08,133.87 138
DATAZ2S.165.90.245,16,178.24
DRTALES.87.169.54.3,133.87
DATA144,2.230,88,282,203 241
DATAZ24.1€5,687,161,.89,133.87
DATR1ES.82.189,55.3,1323,83
DRTR9E.162.57.141.58,3, 169,

DATA V265, "LIMES 3440 — 2530

DRTAG . 132,589,141 .56.3.76
DRTRZ242.,129,.169.57.141.52.3
DATARI7E,52.2,122,89.141 .56
DATR2.756.242.120,162,57 . 141
DATRSE .. 169.6,.13%,.96, 141
DATAS?.3.76,242,120.169 .57
DATAL41.5€,32,173,52,2.133
DRTASA.141,57,3.76,242.128
DATATZ2,152.72.,1%8.72.165.1
DRTA41.254,133.1.169.0.141

DATR 67€S."LINES 355@ - 364@ "

CATASE.3.141.57,3,173.52
DATAZ.141,54.3.233.40, 141
DATAS2,2.173.53.3,233.25
DATA141,53,32,76,153.121.72
DRTA1S2.72.138,72,165.1.41
DATA2S4.132.1.168.@.,133,87
DATA173,55.3.123%.88,169,32
DATALER, @, 145,87, 136,208,201
DATAZZ0.88,165,88,201.112.262
DATA239,165.1.9.1.133.1

DATA 6966, "LIMES 3688 -~ 3758

DRTAL1G4 . 170,164,168, 164 ,9€6,72
DATA1S2.72.13%,72,165,1 .41
DATAZSS,13%,1.173.56,3,.133
DATASS,172,57.2,133.58.32
DRTAZ2E7.120,169,8,133.89. 169
DATA4 . 132,20 ,152,23,150,39
DATARZZ.161.122.177.687,145,689
DATAL177.54,145.96,136,.15.245
DATAZ24.165.67,1609.54 .3 . 132
DATRSY . 144 .2.270,.28.24, 155

DATA_7374."LINES 2776 - 3268
OATAS2.1A5.40, 122,83, 144 .2

DATARZZA , 96,262,202 .214. 165,11
DATAR9,1.,13%,1.,104,170, 104
DRTR1EE, 1684 ,96.72.152.72.138
DATA72.165,1.41.,254,133,1

590G
53109
5926
5936
594@
5353
59¢6
5379
S9se
5926
s668
56018
&aza
5038
€849
5050
&0ca
&879
€a2e
€950
€16@
€118
€126
6130
€140
6150
616a

ODATAI732.56.2,133.89, 173,57
DATARZ2,133.,208,32,237.129.,169
DATAB, 133,89,169.4.133,90
DATA162.23.160,33.32,181,122
DATAR177.89.145,87,177,9€, 145
DATA 7424, "LIHES 3888 -~ 337a@ "
DATAS4 . 1326,16,245,24,165.87
DATR1G3 .54 .3,133,87.144.2
DATAZZEB.58.24. 165,89, 105, 46
DATAR133.83.144.2,.230.,90.,262
DARTA2GZ.214,165,1.9,1.13%
DATAL.104.170,104,168,104 .96
DATAR?2.152.72.138.72,165,1
DATA41,254,133,1.169.0,133
DRATASS., 1323.96,24. 166,91, 165
OATASA. 105.24,132,90,202,208
DATA 7421 ,"LIHES 2996 - 4@20 "
OATR247.76.212,121.72.152.72
DATA138,72,.1€5.1.41,254,133
DOATAL1.169.6.122.89,.133,30
ORATA24.1€6€6 .91, 165,96, 165,24
DATAL133,90,282,208,247,75.50
DATR122,165.87, 133,94, 165,89
DATA1332.96,165,88.24,1085.80
DATAR123,95,165,90,24, 185,212
DATAL133.97.96

DATA €744 ,"LINES 4100 ~ 4186 ", -1

READY.

161

MULTIPLE SCREEN DISPLAY

The loader on pp. 156-61 should be loaded and run once before
using this program.

DESCRIPTION

This program is a demo of multiple page display and save. The-
program is the Machine Code routines to set up and manipulate
the screen. Up to six pages can be displayed and stored.

PROGRAM STRUCTURE

The following lines are of interest:

60-70 : Limittop of memory and clear the pointers.

105-140 : Set screen and border colours and initialise
pointers for the large screen area.

250-450 : Creates the six pages and awaits user input and
command to move to nextpage.

520-610 : Displays any of the six pages created.

162

10 REM Sdkdas e b e b sk sogp e
Z8 REM ¥*DEMOMSTRATION OF MULTIPLE *
235 REM #SCREEN PAGE SAVE AND DISPLAY %
28 REM ¥USIMG LARGE SCREEM ROUTIHES. #*
33 REM #WILL SAVE UP TO SIX SEFERATE *
48 REM #SCREEM PAGES. ¥
SB REM sbsstskssbknsobknbmnikming
&1 POKESS,@:POKESS .88

T8 POKES1 .6:FOKES2.88:CLR

88 REM

S8 REM INITIALISE VARIABLE POQIMTERS FOR
95 REM LARGE SCREEM

186 REM

165 POKESS2E1.,12:FPOKES3286,12

118 FOKE220.48

126 POKES21.15@

122 POKESZ2,82

14 SYS(31692>

158 REM

158 REM

179 REM

1868 REM CREATE SIX DEMONSTRATION SCREEM
185 REM FRGES AMD STORE FOR LATER

196 REM RECALL. ENTER RAHY TEXT OF YOUR
135 REM OWMN AMD THEMW FRESS “HOME’

288 REM TO SAVE THART PAGE IN MEMORY,
218 REM

22 PRINT"O"

230 DATA"DEMO PARGE ONE"."DEMO PAGE TWO"
235 DATA"DEMO PAGE THREE"

248 DATA"DEMD PAGE FOUR™,"DEMO PRGE FIVE"
245 DATAR"DEMO PAGE SIX"

=256 POKES?.S:POKEES,.S5:SYS(29216)

260 PRINT" ZWCREATE DEMONSTRATIOH FAGES AND"
276 POKEE? .6 :FOKESS, 12:SYSC23216)

280 PRINT"QSEZTORE IN MEMORY™

296 POKES?Y . 16 :POKERE ., 4 :SYS(29216)

200 PRINT"REFRESS "HOME® TO CREATE NEXT FAGEM":
31@ GETA$:IFAS=""THEHZ1A

28 IFA$OUEUTHENZ1G

3@ PRINT D"

40 FORGR=1TOE

358 A=0+48

268 POKESS,0:POKESS.8:POKESL , 29 :FOKESZ, 23
3ET POKEVEE .6:12YS(29024)

376 POKES?.18:FOKESE, 13 :8¥Y5(29216)

350 RERDARF :FRIMNTRS

385 POKEE?,Z:FPOKESS,2:1SYSC¢29216)>

298 GETRF:IFA$=""THEMZ%O

408 IFAF="8"THEN420

41@ IF AFLOCHRECIZITHEMPRINTAS : :GOTO420

163

415
426
433
446
450
450
47
420
490
Sea
sS85
S10
Sza
Lcls)
546
545
556
555
SeB
sre
Soa
S22
£Ea
510

FRINTAS : "0l :

GOTOZ90

POKESL . :8YS(31331)

FRINT"O"

HEXTH

REM

REM

REM

REM

REM DISFLAY ANY OF THE PREYIOUSLY

REM CREATED SIX PAGES.

REM

FOKES? . 10 :POKESS,5:SYS(29216)

PRIMT" RaDISFLAY DEMONSTRATION PARGESE"
POKE €9.08:FOKESS@, 28 :FOKESL . 48 tPOKETE4 . 32
POKE?S6 ., 6 18YS (225080

FOKE €9.0:FOKES8,24:FOKESL . 40 POKET24 ., 32
POKETSEG . € 1 5YS (282892

FOKESY , 23 1FOKESS . G:SYSC292160

PRIMT" XFARCGE # "

IHFUTA

IFA<10RAZETHENSHO

POKESL . AISYS(31343)

GOTOS4@

READY.

164

THIS IS A SAMPLE SCREEN PRODUCED WITH
WITH THIS PROGRAM AND STORED IN MEMORY

FOR LATER RECALL.

UP TO SIX SCREENS MAY BE KEPT IN

MEMORY AT ONE TIME.

165

LARGE SCREEN

The loader on pp. 156-61 should be loaded and run once before
using this program.

DESCRIPTION

This program is a demo of the routines to control a large screen text
area. It emulates some of the functions of a simple word
processor, although the speed is restricted as the bulk of the
program is written in Basic.

PROGRAM STRUCTURE

The lines of particular interest in the program are as follows:

65-80

120-150
210-230

270-320
390-410

450-520
580-670

710-800
840-930
970-1060
1100-1160
1190-1250

1290-1390

1430-1510
1770-1910

166

: Set the screen and border colours and limit the top

of memory, then clear the pointers.

: Initialises the pointers for the large screen area.
: Puts the cursor at the top left and sets up the

control characters.

: Scans for cursor control inputs.
: Scans for the F1 key. If pressed, highlights the C and

allows access to the control options, which are:
I-input data to the screen.

0-output o the printer.

D-—delete the entire contents of large screen area.

: Displaysthe control line.
: This is the cursor control subroutine. This is the

cursor up routine.

: Thisis the cursor left routine.
: Thisisthe cursor right routine.
: Thisis the cursor down routine.
: Thisis the cursor home routine.
,: Controls the input for the Control keys, F1 exits this

mode.

: Executesthe large screen erase.
: Routine to putdata onto the large screen.
: Routine to output contents of the large screen to

the printer.

18
26

25

38
39
40
45
se

S5

€a
€S
va
&8
sa
168

118
126

130
148
150
1€a
170
1€
125
198
208
21a
215
2z6
238
240
256
260
270
2en
296
el
a1
zze
228
&48
45
e
205
68
285
&re
37

zee
o8
480

REM btk o R ok
REM #DEMOMSTRATION OF ROUTIMESH
REM ¥TO COMTROL LARGE SCREEN *
REM %TEXT AREA. THE PROGRAM *
FREM #EMULATES SOME 0OF THE *
REM #FUNCTIONS OF & SIMPLE *
REM #WORD PROCESSOR SINCE MOST#*
REM %0OF THE CODE IS WRITTEN I
REM *BASIC IT IS VERY SLOW *
REM seksiib bbb b ko b b ok
POKESZ281, 12 :POKES3286.12:2=1
POKESS.R :POKESE .20
POKES1 .8 :FOKESZ .80 :CLR
REM

REM INITIALISE POINTERS FOR LARGE SCREENM
REM

FOKESZ@,22

POKES21.77

POKESZZ.20

SYS(21683)

LP=6 :CP=0:0C=6:L.C=6:C=R :F=0

REM

REM PUT CURSOR RT TOP LEFT AMD SET UP
REM % COMTROL CHARACTERS

REM

PRINT"O"

POKESS . CFP:FOKESS,LP :POKES1 . 1 :POKES2, 1
POKETES, 1 :SYSC22960)
FOKE2@1€,3:POKEZE1 €, 4 :FOKEZO20 , 9 :FOKEZG22, 1S
GOSUE426

REM

REM GET CURSOR CONTROL INPUTS

REM

GETHA$: IFAF=""THEMNZ27H

IFA$="M" THENGOSUESES

IFA$="1" THENGOSLIEE SR

IFA$="RI" THENGOSLUIES2O

IFA$=""1" THENGOSUERSSE

IFA$="8" THENGOSUE 1083

FEM

REM “F1’ 1S COMTROL KEY IF PRESSED
REM THEN “C’ OM COMTROL LINE

REM IS REVERSED AND CONTROL OPTIOHNS
REM EMAELED. THESE RRE:

FEM I -INFUT DATA TQ SCREEN.

REM O -DUTPUT TO FRIMTER

REM [0 -DELETE EWTIRE LARGE SCREEN
REM COMTENTS

REM

IFA$="@"THEMFOKEZ2G16€, 131 :GOSUEL 1 76
POKE 187,255

167

416 GOTO238

426 REM

420 REM DISFLAY COWTROL LIME

443 REM

45a POKESS,@:POKES@,EE:PUKEQI.38=PDKE?84,€?
455 POKETS6 .7 :SYS(22808>

460 FOKES?, 24 :POKESS . B:EYSI29216)

478 PRINT" COLUMN LIHE "
466 FOKES? .24 :POKEES, 14 :1SYSC282160

458 PRINTCC:

S@E POKES? .24 :POKESS . 25:SYS(282160

518 PRINTLC:

S1s FORDM=S62S6TOSEZ9S : FOKEDM . 1 sHEXT

S28 RETURN

538 REM

546 REM CURSOR CONTROL SUBROUTIHES

558 REM

€@ REM CURSOR UP

579 REM

500 LC=LC+1 :IFLCO>230RLC=23THENL=L+1

599 IFLCO>PSTHENLC=?S

€68 IFL>SOTHEML=5@

618 POKES9.CP :POKESS LP :POKES1 . 1 :POKES2 .. 1
€15 FPOKETEE,3:18YS(2896E)

€28 LP=LC

6@ IFLCOZ2THEHWLF=22

640 POKES25.L

€56 SYS(31173)

660 POKESS .CF :POKESS ., LP :POKES1 . 1 :POKESZ . 1
€&5 POKETEE . 1 :1SYS(2E8966)

&76 RETURN

€e@ REM

€99 REM CURSOR LEFT

7oa REM

vie CC=CC-1 : IFCCIE90RCC=2FTHENC=C~1

728 IFCC<BTHEMCC=9

750 IFCATHEHWC=8

74 POKESS ,CP :POKES@ . LP :POKES .1 :POKES2. 1
745 POKETEE, S 1SYS(2E966)

7Se CP=CC

768 IFCCIR90RCC=2STHENCP=39

77e POKE224.C

7o6 SYS(R1IVE

vaa POKESS ,CP :POKESD ,LP :POKESL 1 :FOKESZ. 1
795 FOKETSE .6 1SYS(28268)

200 RETURN

€1eé REM

226 REM CURSOR RIGHT

£36 REM

246 CC=CC+1 1 IFCCH4A0RCC=4ATHENC=C+1

256 IFCC>SETHENCC=8Q

168

eca
ave
7o
ez
asa
Seg
218
a2
32S
922
S840
258
S€B
Sve
226
296
l1aca
1@as
121@
1620
1630
1e4@
1a5a
1@ss
1620
1g7g
1839
1920
1166
11435
111@
1128
11za
1148
1145
1150
11ea
1176
1175
1ica
1192
1ze8
1218
1228
1238
124@
1245
1258
1260
12va
1275

IFC>4B8THENC=46
POKEES .CF :POKESB.LP:POKEDL . 1 :POKESZ . 1
POKETSE ., 71 SYS(28966)
CP=CC

IFCCH>220RCC=33THENCP=23
FOEES24 .,.C
SYSCZILITE
POKESS . CF :POKES@.LP:FOKESL . 1 :POKES2, 1
FOKETSE , 2 :SYS(209a)
RETURN
FEM
REM- CLIRSOR DOWN
REM
LC=LC—-1 : IFLCr220RLC=22THENL =L -1
IFLC<ATHEMLC=08

IFL<BTHEMNL=

POKESS,CP :POKESG ., LP:FOKER] . 1 :POKESZ .1
POKETEE , £ :18YS(28958)5

LP=LC

IFLC>22THENLP=22

POKES2S.L

SYS(21173

POKES2.CP :POKESS . LF :FOKESL . 1 :POKESZ , 1
FPOKE?EE, 1 :SYS(2E366)

RETLURHM

REM

REM CURSOR HOME

REM

FOKESE . CP:FPOKEST .LP:FPOKESS ., 1 1 POKEESR, 1
POKEYSE.1 :SYS (283605
CC=@:C=0:CP=@:FOKESZ24,.C
LC=@:L=0:LP=0:POKES25 .L

SYS(BLIITE
POKESS,CPPOKESE,LF iPOKESL . 1 tFOKES2, 1
POKET2E, 1 15YS(28966)

RETURM

REM

REM INFUT CONTROL FUMCTION KEY -

REM PRESS “F17 TO EXIT COMTROL MODE
REM

GOSUIB428

GETA$: IFRF=""THEN1Z0OG
IFAE="0"THEMN1278

IFAE="I"THEN1418@

IFAF="0"THENITS@

IFAFO M THEML Z2S8

POKEZ2E1S, 21FORA=1TOI1EE tHEXT :RETLIRH
GOTO1156

REM

REM PERFORM LARGE SCREEM ERASE

REM FUNCTION - “CONTROLS AMDO "O°

169

1280
1239
1204
1218
1320
132330
13240
1358
1268
1278
1208
132330
1400
1418
1415
1428
1420
1446
14583
1466
14va
148
1456
1566
1516
1520
1520
1548
1554
1585
1558
1560
1565
157

1575
1526
1520
1668
1616
1626
16320
1548
1850
1668
1676
1675
1520
1696
1780
1716
1728

170

REM

FOKE20112.132
POKES?,24=FOKE88,B=SVS(29216)
FRINT" KMELETE?®" =

GETAS: IFA$=""THEHN1328
IFA$<> YY" THEH1I37O

SYSCI11242

SYSC211IT3)

GOSLIB1 889

SOSLIB422

FOKEZA1E . 3 :POKE2018 .4

RETURN

REM

FEM FERFORM DATA INPUT FUNCTIOH -
REM TCOMTROLS AMO 7I°

FEM

FOKEZ029 . 137

GOSLUE4328

POKE197 255 :REM REPERT

GETA$: IFA$=""THEN14£0

IFA$=" " THEHNGOSUESED :GOTO1 440
IFA$="§1" THEHGOSUBESA : GOTO 1440
IFA$="K"THEHGOSUBS20 :GOTO1 440
IFA$=""1" THEMGOSUESSH :GOTA1443
IFR$="3"THEMGOSUE 1083 :GOTO1 440
REM

REM FPRESS "F1’ TO EXIT INFUT MODE
REM

IFAS<>"@" THEH1TEO
PUMEZBIS,S:POKEZBEG,S=FOR@=1T0163=NEXT=RETUEH
FORM=1TO16A :HEXT :RETURHN

POKEST . LP tFOKESS CF :SYS(232160
POKES4E .2

FRIMTR$

Z=FEEKE4ED

SYS(I12€61)

IFDC=FITHEH1528

GOSLIBSZE

GOTO1440

Co=0:CP=3:C=0

POKER24 .C
LC=LC+1 1 IFLCD22THEML=L+1
IFLCHPSTHENLC=7S
IFL>S@ETHEHL=5Q
PDKEBe.CP:POKEQ@.LP:POKESI,1:POKEBZ,l
FOKETSE . 7:SYSI 2826

LP=LC

IFLCDE2THEMLP=22

POKES2S . L

SYSIS11T3)
PDKEBB.CP:POKES@.LP:PDKEQI,1:PDKE92,1

1725 POKETEE .7 1SYS(28266)

1728 607014406

1746 REM

1758 REM QUTFUT COHTEMTS OF LARGE SCREEM
1735 REM TO PRINTER - “COMTROL” AND ~Q°
1768 FEM

1778 FPOKE2622, 143

1780 OFEH4 .4

1720 FORQ=22480TO2ES52STEFS2

1806 FORK=QTOR+79

1219 R=FEEK(X)

1ez0 B=R

1336 IFAC2ZTHENB=AR+E4 : IFR>E3THENE=32
1240 RA$=CHR$ (B>

1258 FRIMT#4 . .R%:

1228 HEXTS

12878 FRIMT#4.CHR$(13):

1220 MHEXTR

1228 CLOSE4

1208 POKEZ2015.3:POKE2R22,15

1916 RETURN

READY.

171

SCREEN SAVE AND READ

The second section in the Display Management contains two Basic
programs for saving the contents of the screen and reading the
Screen Save back onto the screen, using a disk drive (they could be
modified for cassette use).

SCREEN SAVE

The Screen Save program first opens a sequential file:
OPEN 2,8,2,"@0:DUMPS,W”

The ‘@’ assumes one has already saved the file before. If there is
no existing file then remove the ‘@’ symbol. Two loops are set up.
The first (1024-1943 in steps of 10) indicates the screen area to be
saved to disk. Only the first 23 lines are saved, the last two lines
have been reserved for command word entry. In other words on the
last two lines one can execute the programs and save the screen
contents without saving the commands. The variable A$ is
initialised and the second loop (0 to 10) is set up. The next step is to
store the contents of the screen into A$ in blocks of 10 and then
output it to the disk. Before jumping back to read the next block A$
is again set to a null string. The colour is then output to the disk in
exactly the same way using the colour locations for each character
onthe screen. Lastly the file is closed.

SCREEN READ

The Screen Read routine first sets the cursor on the 23rd line of the
screen. The program then opens a sequential file, this is done with
OPEN 2,8,2,"DUMPS,R”; where ‘DUMP’ is a sample file name, S
stands for sequential and R stands for read. Having opened the file
the program executes a loop in steps of 10 (1024 to 1943 the first 23
lines), using the array A$ to store the contents of the screen in
blocks of 10. The colour is then read from the disk, and the same
method used to set the correct colour data onto the screen using
the colour memory. Finally, the program closes the file.

172

16666
108146
19620
19534
loa4a
10859
16850
128743
16828
182233
19166
1911@
18126
1a1z2a
18148
12154
leica
READY.

OFENZ,8,2,"@8 :DUMP, S . N"
H$= "nn

FOR I=1024 TO 1943 STEP 1@
FOR J=@ TD 16
AF=A$+STRF(FEEKCI+ID>+" . "
HEXT J
AE=LEFT$(AF . LENCA$)I~1)
FRINT#2 .A¥

AE=""HEXT I

FOR I=55296 TO S&215 STEP 10
FOR J=8 TO 18
AF=AF+STRECPEEKCI+II D+, "
NEXT J
AE=LEFT$C(AT.LENCA$Y~1>
FRINT#2.A$

RE=""tHEXT I

CLOSE2

16066 FRINT " aCIasalaaaialeeiaeelelmaisian” sCIM ACS)

16918 OFEH 2,2.2."DUMP .S . R"

19228 FOR I=1824 TO 1943 STEP 1@

10838 IHFUTH#2.AC8Y A1) JAC2) . AC3) ,AC4) ,ACS) .ACE
YL AC?XLAC8Y LA

19040 FOR J=8 TO 9

16638 POKEI+J, AT

19968 MEXT J.I

16078 FOR I=5529€ TO 56215 STEF 16

16988 IHPUT#2,AC03 ,R(1).AC2) .AC3) .AC4) LACS) ALK
2 LAC7YLABY LA

198235 FOR J=8 TO 9

19108 POKEI+J, AT

18118 HEXT J.1I

18120 CLOSE 2

REACH.

173

APPENDICES

175

APPENDIX A
Screen Display Codes

[0}
X ¢ 0 © N ©® ® O N M N © O O r N O T D O N~ ©
° 5555556&666%%666777777777mw
o~
| <mOO0OWwWuUuOoTIT-—- >S>5Y¥ 43z 0 a
(7]
- - -
Gl ©~ oo vira ~NE5DI00O008MHA0OrNDOD
¥ S I T, oY
~ O @ O N ™M

m2223&3333%W%%Wﬂ&%“%%ﬂ%@wMSS
o~
@
7]

{99

X
- <t
W[Q]T&nn\rul. * o 2 o - o~ s 4 - -~ O ~ N ™ ¢
w
gl o-r ot woOo~N 0 2 N¥NOT WO 2238 Q38¢g
a
[,]
5 © 0 0 VD ® - L - X — F C 0 Q0T =~ 0 « 3 > 2 x >N
»
i @ABCDEFGHIJKLMNOPQRSTUVWXYZ
(7]

177

SET2 POKE

SET 1

113
114
115
116
117
118
119
120
121
122
128
124
125
126
127

SET 2 POKE

SET 1

SET 2 POKE

SET 1

oac n kD> T X >N EN

@0rONXORB-BEEER

SPACE

Codes from 128-255 are reversed images of codes 0-127.

178

CHARACTER SE'¥
(bit 2 of $0001)

0 = CHAR ROM

1 = [/0 ROM/RANM

VIC Hl Chip sces
this 16K block
on power-up

$FFFF

$E000
$DC00
$D800
$D000

$C000

$A000

$8000
{32768)

$4000
(16384)

$2000
(8192)

$0800

$0400

$0000

APPENDIX B
Screen Colour and Memory Map

(65335} ——m—— -1
8K HI RAM
(bit 1 of $0001)
KERNAL ROM 0= RAM
1 = KERNAL ROM
(1Y

CIA 1,CIA 2(S. Bus, PU.P)

Colour Ram Nibbles
iy

4K RAM
maps to $D000 when
bits 0 & 1 of $0001 = 0

VIC I, SID
(53248)
4K RAM
(49152)
BASIC 8K LO RAM
l\"I‘Fl;)‘RFTFR {bit 0 of $0001)
koM 0 RaM
I = BASIC ROM
(40960)————— -
EXROM
8K ROM Cartridge
maps here
BASIC
User RAM
(38912Bytes) |
HI-RES Screen
maps here

(2048)
Screen (1K)

HI-RES Colour Table

(1024)
Workspace (1K)

Processor Reg (80/1)

179

LoD

ELACK

WHITE

FED

M

FURFLE

GREEH

ELUE

YELLOW

ORAMHGE

EROMWH

LT.
1
M.
LT.
LT.
LT.

180

FED
GREY
GREY
GREEM
ELLE
GREY

IM LISTIMGS HORMAL

B @
E 1

P
"

8

a

b
| <
)

= =2 =X E2
i o0 =~J b p |

=
—
b

HERE - B
— — [y
£ L o

APPENDIXC
Colour Chart Codes

MULTI-COLOUR

ol

He'H
H/H
He'H
H/H
HeF
HeH
HAH

'“I |" H

PO AMUUWBW Ussldg
a XIAN3ddvY

6€

v86L

veoL

181

piD Atowsw inojo)
I XIAN3ddVY

99296

96295

182

BYTES1,2,3
BYTES4,5,6
BYTES78,9
BYTES 10,11,12
BYTES 13,14,15
BYTES 16,17,18
BYTES 19,20,21
BYTES 22,23,24
BYTES 25,26,27
BYTES 28,29,30
BYTES31,32,33
BYTES 34,35,36
BYTES 37,38,39
BYTES 40,41,42
BYTES 43,44,45
BYTES 46,47,48
BYTES49,50,51
BYTES 52,53,54
BYTES 55,56,57
BYTES 58,59,60
BYTES 61,62,63

BYTE #1

128 64 32 16 8 4 2

BYTE#2

112864 32 16 8 4 2

1

BYTE#3

128 64 32 16 8 4 2

1

APPENDIXF
Sprite Grid

183

12864 32 16 8 4 2 1

BYTE#1

N AW N

BYTE#8

12864 32 16 8 4 2 1

BYTE#1

N O g s~ W N

BYTE #8|

12864 32 16 8 4 2 1

APPENDIX G
Character 8x8 Grid

184

INDEX
Colour 5

An in-depth explanation of producing colour displays on the 64.
Graphics 29

How to produce Hi-Res Graphics, plus Machine Code routines and
demonstration programs.

Sprites 71

Theories behind the display of Sprites and user-defined characters
plus programs for producing the Sprites and characters.

Display Management 95

A collection of Machine Code routines to make displaying
Commodore 64 characters on the screen much easier.

Appendix A 176

Screen display ‘POKE’ codes: the characters achieved by POKEing
certain values into the screen memory.

Appendix B 179
Screen colour and memory map
Appendix C 180

Chart colour codes: the colours achieved by POKEing values into
the colour memory.

Appendix D 181
Screen memory grid. Useful for planning displays
Appendix E 182

Colour memory grid. Used in conjunction with Appendix D.

185

Appendix F 183

B

Sprite grid. Used for planning Sprite displays.

Appendix G 184

Character grids. Used for planning user-defined characters.

186

